Optimal. Leaf size=20 \[ \frac {1}{3} x (-e+x) \left (4+\frac {8 x}{\log (\log (2))}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 37, normalized size of antiderivative = 1.85, number of steps used = 2, number of rules used = 1, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.033, Rules used = {12} \begin {gather*} \frac {8 x^3}{3 \log (\log (2))}-\frac {8 e x^2}{3 \log (\log (2))}+\frac {1}{3} (e-2 x)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (-16 e x+24 x^2+(-4 e+8 x) \log (\log (2))\right ) \, dx}{3 \log (\log (2))}\\ &=\frac {1}{3} (e-2 x)^2-\frac {8 e x^2}{3 \log (\log (2))}+\frac {8 x^3}{3 \log (\log (2))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 36, normalized size = 1.80 \begin {gather*} \frac {-8 e x^2+8 x^3-4 e x \log (\log (2))+4 x^2 \log (\log (2))}{3 \log (\log (2))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 33, normalized size = 1.65 \begin {gather*} \frac {4 \, {\left (2 \, x^{3} - 2 \, x^{2} e + {\left (x^{2} - x e\right )} \log \left (\log \relax (2)\right )\right )}}{3 \, \log \left (\log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 33, normalized size = 1.65 \begin {gather*} \frac {4 \, {\left (2 \, x^{3} - 2 \, x^{2} e + {\left (x^{2} - x e\right )} \log \left (\log \relax (2)\right )\right )}}{3 \, \log \left (\log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 32, normalized size = 1.60
method | result | size |
gosper | \(-\frac {4 x \left (\ln \left (\ln \relax (2)\right ) {\mathrm e}+2 x \,{\mathrm e}-x \ln \left (\ln \relax (2)\right )-2 x^{2}\right )}{3 \ln \left (\ln \relax (2)\right )}\) | \(32\) |
risch | \(-\frac {4 x \,{\mathrm e}}{3}-\frac {8 x^{2} {\mathrm e}}{3 \ln \left (\ln \relax (2)\right )}+\frac {4 x^{2}}{3}+\frac {8 x^{3}}{3 \ln \left (\ln \relax (2)\right )}\) | \(34\) |
default | \(\frac {\ln \left (\ln \relax (2)\right ) \left (-4 x \,{\mathrm e}+4 x^{2}\right )-8 x^{2} {\mathrm e}+8 x^{3}}{3 \ln \left (\ln \relax (2)\right )}\) | \(36\) |
norman | \(-\frac {4 x \,{\mathrm e}}{3}+\frac {8 x^{3}}{3 \ln \left (\ln \relax (2)\right )}-\frac {4 \left (2 \,{\mathrm e}-\ln \left (\ln \relax (2)\right )\right ) x^{2}}{3 \ln \left (\ln \relax (2)\right )}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 33, normalized size = 1.65 \begin {gather*} \frac {4 \, {\left (2 \, x^{3} - 2 \, x^{2} e + {\left (x^{2} - x e\right )} \log \left (\log \relax (2)\right )\right )}}{3 \, \log \left (\log \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.35, size = 21, normalized size = 1.05 \begin {gather*} \frac {4\,x\,\left (2\,x+\ln \left (\ln \relax (2)\right )\right )\,\left (x-\mathrm {e}\right )}{3\,\ln \left (\ln \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.07, size = 41, normalized size = 2.05 \begin {gather*} \frac {8 x^{3}}{3 \log {\left (\log {\relax (2 )} \right )}} + \frac {x^{2} \left (- 8 e + 4 \log {\left (\log {\relax (2 )} \right )}\right )}{3 \log {\left (\log {\relax (2 )} \right )}} - \frac {4 e x}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________