Optimal. Leaf size=13 \[ \log \left (-5+\frac {e^{e^x}}{x^2}+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {x^3+e^{e^x} \left (-2+e^x x\right )}{e^{e^x} x-5 x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^{e^x+x}}{e^{e^x}-5 x^2+x^3}+\frac {-2 e^{e^x}+x^3}{x \left (e^{e^x}-5 x^2+x^3\right )}\right ) \, dx\\ &=\int \frac {e^{e^x+x}}{e^{e^x}-5 x^2+x^3} \, dx+\int \frac {-2 e^{e^x}+x^3}{x \left (e^{e^x}-5 x^2+x^3\right )} \, dx\\ &=\int \frac {e^{e^x+x}}{e^{e^x}-5 x^2+x^3} \, dx+\int \left (-\frac {2}{x}+\frac {x (-10+3 x)}{e^{e^x}-5 x^2+x^3}\right ) \, dx\\ &=-2 \log (x)+\int \frac {e^{e^x+x}}{e^{e^x}-5 x^2+x^3} \, dx+\int \frac {x (-10+3 x)}{e^{e^x}-5 x^2+x^3} \, dx\\ &=-2 \log (x)+\int \frac {e^{e^x+x}}{e^{e^x}-5 x^2+x^3} \, dx+\int \left (-\frac {10 x}{e^{e^x}-5 x^2+x^3}+\frac {3 x^2}{e^{e^x}-5 x^2+x^3}\right ) \, dx\\ &=-2 \log (x)+3 \int \frac {x^2}{e^{e^x}-5 x^2+x^3} \, dx-10 \int \frac {x}{e^{e^x}-5 x^2+x^3} \, dx+\int \frac {e^{e^x+x}}{e^{e^x}-5 x^2+x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 19, normalized size = 1.46 \begin {gather*} -2 \log (x)+\log \left (e^{e^x}+(-5+x) x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 18, normalized size = 1.38 \begin {gather*} \log \left (x^{3} - 5 \, x^{2} + e^{\left (e^{x}\right )}\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 28, normalized size = 2.15 \begin {gather*} -x + \log \left (x^{3} e^{x} - 5 \, x^{2} e^{x} + e^{\left (x + e^{x}\right )}\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 19, normalized size = 1.46
method | result | size |
norman | \(-2 \ln \relax (x )+\ln \left (x^{3}-5 x^{2}+{\mathrm e}^{{\mathrm e}^{x}}\right )\) | \(19\) |
risch | \(-2 \ln \relax (x )+\ln \left (x^{3}-5 x^{2}+{\mathrm e}^{{\mathrm e}^{x}}\right )\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 18, normalized size = 1.38 \begin {gather*} \log \left (x^{3} - 5 \, x^{2} + e^{\left (e^{x}\right )}\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 18, normalized size = 1.38 \begin {gather*} \ln \left ({\mathrm {e}}^{{\mathrm {e}}^x}-5\,x^2+x^3\right )-2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 19, normalized size = 1.46 \begin {gather*} - 2 \log {\relax (x )} + \log {\left (x^{3} - 5 x^{2} + e^{e^{x}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________