Optimal. Leaf size=22 \[ \frac {1}{4} \left (-5+e^{2-\left (5+e^3\right )^2}+x\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 31, normalized size of antiderivative = 1.41, number of steps used = 2, number of rules used = 1, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.028, Rules used = {12} \begin {gather*} \frac {1}{4} (5-x)^2+\frac {1}{2} e^{-23-10 e^3-e^6} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} e^{-23-10 e^3-e^6} \int \left (1+e^{23+10 e^3+e^6} (-5+x)\right ) \, dx\\ &=\frac {1}{4} (5-x)^2+\frac {1}{2} e^{-23-10 e^3-e^6} x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 31, normalized size = 1.41 \begin {gather*} \frac {1}{2} \left (-5 x+e^{-23-10 e^3-e^6} x+\frac {x^2}{2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 34, normalized size = 1.55 \begin {gather*} \frac {1}{4} \, {\left ({\left (x^{2} - 10 \, x\right )} e^{\left (e^{6} + 10 \, e^{3} + 23\right )} + 2 \, x\right )} e^{\left (-e^{6} - 10 \, e^{3} - 23\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 34, normalized size = 1.55 \begin {gather*} \frac {1}{4} \, {\left ({\left (x^{2} - 10 \, x\right )} e^{\left (e^{6} + 10 \, e^{3} + 23\right )} + 2 \, x\right )} e^{\left (-e^{6} - 10 \, e^{3} - 23\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 24, normalized size = 1.09
method | result | size |
risch | \(\frac {x^{2}}{4}-\frac {5 x}{2}+\frac {x \,{\mathrm e}^{-{\mathrm e}^{6}-10 \,{\mathrm e}^{3}-23}}{2}\) | \(24\) |
default | \(\frac {{\mathrm e}^{-{\mathrm e}^{6}-10 \,{\mathrm e}^{3}-23} \left ({\mathrm e}^{{\mathrm e}^{6}+10 \,{\mathrm e}^{3}+23} \left (\frac {1}{2} x^{2}-5 x \right )+x \right )}{2}\) | \(39\) |
norman | \(\frac {x^{2}}{4}-\frac {{\mathrm e}^{-{\mathrm e}^{6}} {\mathrm e}^{-10 \,{\mathrm e}^{3}} {\mathrm e}^{-23} \left (5 \,{\mathrm e}^{{\mathrm e}^{6}} {\mathrm e}^{10 \,{\mathrm e}^{3}} {\mathrm e}^{23}-1\right ) x}{2}\) | \(42\) |
gosper | \(\frac {x \left ({\mathrm e}^{{\mathrm e}^{6}+10 \,{\mathrm e}^{3}+23} x -10 \,{\mathrm e}^{{\mathrm e}^{6}+10 \,{\mathrm e}^{3}+23}+2\right ) {\mathrm e}^{-{\mathrm e}^{6}-10 \,{\mathrm e}^{3}-23}}{4}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 34, normalized size = 1.55 \begin {gather*} \frac {1}{4} \, {\left ({\left (x^{2} - 10 \, x\right )} e^{\left (e^{6} + 10 \, e^{3} + 23\right )} + 2 \, x\right )} e^{\left (-e^{6} - 10 \, e^{3} - 23\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.24, size = 30, normalized size = 1.36 \begin {gather*} \frac {{\mathrm {e}}^{-20\,{\mathrm {e}}^3-2\,{\mathrm {e}}^6-46}\,{\left ({\mathrm {e}}^{10\,{\mathrm {e}}^3+{\mathrm {e}}^6+23}\,\left (x-5\right )+1\right )}^2}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.07, size = 41, normalized size = 1.86 \begin {gather*} \frac {x^{2}}{4} + \frac {x \left (- 5 e^{23} e^{10 e^{3}} e^{e^{6}} + 1\right )}{2 e^{23} e^{10 e^{3}} e^{e^{6}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________