Optimal. Leaf size=23 \[ x \left (x+\left (e^x+\left (4-\frac {2 x^2}{\log (x)}\right )^2\right )^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 1.40, antiderivative size = 98, normalized size of antiderivative = 4.26, number of steps used = 45, number of rules used = 8, integrand size = 141, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {6742, 2176, 2194, 2288, 2306, 2309, 2178, 2353} \begin {gather*} \frac {16 x^9}{\log ^4(x)}-\frac {128 x^7}{\log ^3(x)}+\frac {384 x^5}{\log ^2(x)}-\frac {512 x^3}{\log (x)}+x^2+\frac {8 e^x \left (x^5 \log (x)-4 x^3 \log ^2(x)+4 x \log ^3(x)\right )}{\log ^3(x)}+256 x-\frac {e^{2 x}}{2}+\frac {1}{2} e^{2 x} (2 x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2178
Rule 2194
Rule 2288
Rule 2306
Rule 2309
Rule 2353
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{2 x} (1+2 x)+\frac {8 e^x \left (-2 x^4+4 x^2 \log (x)+5 x^4 \log (x)+x^5 \log (x)-12 x^2 \log ^2(x)-4 x^3 \log ^2(x)+4 \log ^3(x)+4 x \log ^3(x)\right )}{\log ^3(x)}+\frac {2 \left (-32 x^8+192 x^6 \log (x)+72 x^8 \log (x)-384 x^4 \log ^2(x)-448 x^6 \log ^2(x)+256 x^2 \log ^3(x)+960 x^4 \log ^3(x)-768 x^2 \log ^4(x)+128 \log ^5(x)+x \log ^5(x)\right )}{\log ^5(x)}\right ) \, dx\\ &=2 \int \frac {-32 x^8+192 x^6 \log (x)+72 x^8 \log (x)-384 x^4 \log ^2(x)-448 x^6 \log ^2(x)+256 x^2 \log ^3(x)+960 x^4 \log ^3(x)-768 x^2 \log ^4(x)+128 \log ^5(x)+x \log ^5(x)}{\log ^5(x)} \, dx+8 \int \frac {e^x \left (-2 x^4+4 x^2 \log (x)+5 x^4 \log (x)+x^5 \log (x)-12 x^2 \log ^2(x)-4 x^3 \log ^2(x)+4 \log ^3(x)+4 x \log ^3(x)\right )}{\log ^3(x)} \, dx+\int e^{2 x} (1+2 x) \, dx\\ &=\frac {1}{2} e^{2 x} (1+2 x)+\frac {8 e^x \left (x^5 \log (x)-4 x^3 \log ^2(x)+4 x \log ^3(x)\right )}{\log ^3(x)}+2 \int \left (128+x-\frac {32 x^8}{\log ^5(x)}+\frac {24 x^6 \left (8+3 x^2\right )}{\log ^4(x)}-\frac {64 x^4 \left (6+7 x^2\right )}{\log ^3(x)}+\frac {64 x^2 \left (4+15 x^2\right )}{\log ^2(x)}-\frac {768 x^2}{\log (x)}\right ) \, dx-\int e^{2 x} \, dx\\ &=-\frac {e^{2 x}}{2}+256 x+x^2+\frac {1}{2} e^{2 x} (1+2 x)+\frac {8 e^x \left (x^5 \log (x)-4 x^3 \log ^2(x)+4 x \log ^3(x)\right )}{\log ^3(x)}+48 \int \frac {x^6 \left (8+3 x^2\right )}{\log ^4(x)} \, dx-64 \int \frac {x^8}{\log ^5(x)} \, dx-128 \int \frac {x^4 \left (6+7 x^2\right )}{\log ^3(x)} \, dx+128 \int \frac {x^2 \left (4+15 x^2\right )}{\log ^2(x)} \, dx-1536 \int \frac {x^2}{\log (x)} \, dx\\ &=-\frac {e^{2 x}}{2}+256 x+x^2+\frac {1}{2} e^{2 x} (1+2 x)+\frac {16 x^9}{\log ^4(x)}+\frac {8 e^x \left (x^5 \log (x)-4 x^3 \log ^2(x)+4 x \log ^3(x)\right )}{\log ^3(x)}+48 \int \left (\frac {8 x^6}{\log ^4(x)}+\frac {3 x^8}{\log ^4(x)}\right ) \, dx-128 \int \left (\frac {6 x^4}{\log ^3(x)}+\frac {7 x^6}{\log ^3(x)}\right ) \, dx+128 \int \left (\frac {4 x^2}{\log ^2(x)}+\frac {15 x^4}{\log ^2(x)}\right ) \, dx-144 \int \frac {x^8}{\log ^4(x)} \, dx-1536 \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {e^{2 x}}{2}+256 x+x^2+\frac {1}{2} e^{2 x} (1+2 x)-1536 \text {Ei}(3 \log (x))+\frac {16 x^9}{\log ^4(x)}+\frac {48 x^9}{\log ^3(x)}+\frac {8 e^x \left (x^5 \log (x)-4 x^3 \log ^2(x)+4 x \log ^3(x)\right )}{\log ^3(x)}+144 \int \frac {x^8}{\log ^4(x)} \, dx+384 \int \frac {x^6}{\log ^4(x)} \, dx-432 \int \frac {x^8}{\log ^3(x)} \, dx+512 \int \frac {x^2}{\log ^2(x)} \, dx-768 \int \frac {x^4}{\log ^3(x)} \, dx-896 \int \frac {x^6}{\log ^3(x)} \, dx+1920 \int \frac {x^4}{\log ^2(x)} \, dx\\ &=-\frac {e^{2 x}}{2}+256 x+x^2+\frac {1}{2} e^{2 x} (1+2 x)-1536 \text {Ei}(3 \log (x))+\frac {16 x^9}{\log ^4(x)}-\frac {128 x^7}{\log ^3(x)}+\frac {384 x^5}{\log ^2(x)}+\frac {448 x^7}{\log ^2(x)}+\frac {216 x^9}{\log ^2(x)}-\frac {512 x^3}{\log (x)}-\frac {1920 x^5}{\log (x)}+\frac {8 e^x \left (x^5 \log (x)-4 x^3 \log ^2(x)+4 x \log ^3(x)\right )}{\log ^3(x)}+432 \int \frac {x^8}{\log ^3(x)} \, dx+896 \int \frac {x^6}{\log ^3(x)} \, dx+1536 \int \frac {x^2}{\log (x)} \, dx-1920 \int \frac {x^4}{\log ^2(x)} \, dx-1944 \int \frac {x^8}{\log ^2(x)} \, dx-3136 \int \frac {x^6}{\log ^2(x)} \, dx+9600 \int \frac {x^4}{\log (x)} \, dx\\ &=-\frac {e^{2 x}}{2}+256 x+x^2+\frac {1}{2} e^{2 x} (1+2 x)-1536 \text {Ei}(3 \log (x))+\frac {16 x^9}{\log ^4(x)}-\frac {128 x^7}{\log ^3(x)}+\frac {384 x^5}{\log ^2(x)}-\frac {512 x^3}{\log (x)}+\frac {3136 x^7}{\log (x)}+\frac {1944 x^9}{\log (x)}+\frac {8 e^x \left (x^5 \log (x)-4 x^3 \log ^2(x)+4 x \log ^3(x)\right )}{\log ^3(x)}+1536 \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )+1944 \int \frac {x^8}{\log ^2(x)} \, dx+3136 \int \frac {x^6}{\log ^2(x)} \, dx-9600 \int \frac {x^4}{\log (x)} \, dx+9600 \operatorname {Subst}\left (\int \frac {e^{5 x}}{x} \, dx,x,\log (x)\right )-17496 \int \frac {x^8}{\log (x)} \, dx-21952 \int \frac {x^6}{\log (x)} \, dx\\ &=-\frac {e^{2 x}}{2}+256 x+x^2+\frac {1}{2} e^{2 x} (1+2 x)+9600 \text {Ei}(5 \log (x))+\frac {16 x^9}{\log ^4(x)}-\frac {128 x^7}{\log ^3(x)}+\frac {384 x^5}{\log ^2(x)}-\frac {512 x^3}{\log (x)}+\frac {8 e^x \left (x^5 \log (x)-4 x^3 \log ^2(x)+4 x \log ^3(x)\right )}{\log ^3(x)}-9600 \operatorname {Subst}\left (\int \frac {e^{5 x}}{x} \, dx,x,\log (x)\right )+17496 \int \frac {x^8}{\log (x)} \, dx-17496 \operatorname {Subst}\left (\int \frac {e^{9 x}}{x} \, dx,x,\log (x)\right )+21952 \int \frac {x^6}{\log (x)} \, dx-21952 \operatorname {Subst}\left (\int \frac {e^{7 x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {e^{2 x}}{2}+256 x+x^2+\frac {1}{2} e^{2 x} (1+2 x)-21952 \text {Ei}(7 \log (x))-17496 \text {Ei}(9 \log (x))+\frac {16 x^9}{\log ^4(x)}-\frac {128 x^7}{\log ^3(x)}+\frac {384 x^5}{\log ^2(x)}-\frac {512 x^3}{\log (x)}+\frac {8 e^x \left (x^5 \log (x)-4 x^3 \log ^2(x)+4 x \log ^3(x)\right )}{\log ^3(x)}+17496 \operatorname {Subst}\left (\int \frac {e^{9 x}}{x} \, dx,x,\log (x)\right )+21952 \operatorname {Subst}\left (\int \frac {e^{7 x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {e^{2 x}}{2}+256 x+x^2+\frac {1}{2} e^{2 x} (1+2 x)+\frac {16 x^9}{\log ^4(x)}-\frac {128 x^7}{\log ^3(x)}+\frac {384 x^5}{\log ^2(x)}-\frac {512 x^3}{\log (x)}+\frac {8 e^x \left (x^5 \log (x)-4 x^3 \log ^2(x)+4 x \log ^3(x)\right )}{\log ^3(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.69, size = 66, normalized size = 2.87 \begin {gather*} 256 x+32 e^x x+e^{2 x} x+x^2+\frac {16 x^9}{\log ^4(x)}-\frac {128 x^7}{\log ^3(x)}+\frac {8 \left (48+e^x\right ) x^5}{\log ^2(x)}-\frac {32 \left (16+e^x\right ) x^3}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 77, normalized size = 3.35 \begin {gather*} \frac {16 \, x^{9} - 128 \, x^{7} \log \relax (x) + {\left (x^{2} + x e^{\left (2 \, x\right )} + 32 \, x e^{x} + 256 \, x\right )} \log \relax (x)^{4} - 32 \, {\left (x^{3} e^{x} + 16 \, x^{3}\right )} \log \relax (x)^{3} + 8 \, {\left (x^{5} e^{x} + 48 \, x^{5}\right )} \log \relax (x)^{2}}{\log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.50, size = 92, normalized size = 4.00 \begin {gather*} \frac {16 \, x^{9} - 128 \, x^{7} \log \relax (x) + 8 \, x^{5} e^{x} \log \relax (x)^{2} + 384 \, x^{5} \log \relax (x)^{2} - 32 \, x^{3} e^{x} \log \relax (x)^{3} - 512 \, x^{3} \log \relax (x)^{3} + x^{2} \log \relax (x)^{4} + x e^{\left (2 \, x\right )} \log \relax (x)^{4} + 32 \, x e^{x} \log \relax (x)^{4} + 256 \, x \log \relax (x)^{4}}{\log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 74, normalized size = 3.22
method | result | size |
risch | \(x \,{\mathrm e}^{2 x}+x^{2}+32 \,{\mathrm e}^{x} x +256 x +\frac {8 x^{3} \left (2 x^{6}-16 x^{4} \ln \relax (x )+x^{2} {\mathrm e}^{x} \ln \relax (x )^{2}+48 x^{2} \ln \relax (x )^{2}-4 \,{\mathrm e}^{x} \ln \relax (x )^{3}-64 \ln \relax (x )^{3}\right )}{\ln \relax (x )^{4}}\) | \(74\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x^{2} + \frac {1}{2} \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} + 32 \, {\left (x - 1\right )} e^{x} + 256 \, x + \frac {8 \, {\left ({\left (x^{5} - 4 \, x^{3} \log \relax (x)\right )} e^{x} - 16 \, {\left (15 \, x^{5} + 4 \, x^{3}\right )} \log \relax (x)\right )}}{\log \relax (x)^{2}} + \frac {1}{2} \, e^{\left (2 \, x\right )} + 32 \, e^{x} + 19200 \, \Gamma \left (-2, -5 \, \log \relax (x)\right ) + 43904 \, \Gamma \left (-2, -7 \, \log \relax (x)\right ) + 131712 \, \Gamma \left (-3, -7 \, \log \relax (x)\right ) + 104976 \, \Gamma \left (-3, -9 \, \log \relax (x)\right ) + 419904 \, \Gamma \left (-4, -9 \, \log \relax (x)\right ) + 9600 \, \int \frac {x^{4}}{\log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.88, size = 76, normalized size = 3.30 \begin {gather*} 256\,x+x\,{\mathrm {e}}^{2\,x}-\frac {512\,x^3}{\ln \relax (x)}+\frac {384\,x^5}{{\ln \relax (x)}^2}-\frac {128\,x^7}{{\ln \relax (x)}^3}+\frac {16\,x^9}{{\ln \relax (x)}^4}+32\,x\,{\mathrm {e}}^x+x^2-\frac {32\,x^3\,{\mathrm {e}}^x}{\ln \relax (x)}+\frac {8\,x^5\,{\mathrm {e}}^x}{{\ln \relax (x)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.42, size = 87, normalized size = 3.78 \begin {gather*} x^{2} + 256 x + \frac {x e^{2 x} \log {\relax (x )}^{2} + \left (8 x^{5} - 32 x^{3} \log {\relax (x )} + 32 x \log {\relax (x )}^{2}\right ) e^{x}}{\log {\relax (x )}^{2}} + \frac {16 x^{9} - 128 x^{7} \log {\relax (x )} + 384 x^{5} \log {\relax (x )}^{2} - 512 x^{3} \log {\relax (x )}^{3}}{\log {\relax (x )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________