Optimal. Leaf size=30 \[ \frac {e^{-5-\left (e^x+e^{x^2}\right )^2-x} (-5+x)}{3 x^2} \]
________________________________________________________________________________________
Rubi [F] time = 9.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x} \left (10+4 x-x^2+e^{2 x} \left (10 x-2 x^2\right )+e^{x+x^2} \left (10 x+18 x^2-4 x^3\right )+e^{2 x^2} \left (20 x^2-4 x^3\right )\right )}{3 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x} \left (10+4 x-x^2+e^{2 x} \left (10 x-2 x^2\right )+e^{x+x^2} \left (10 x+18 x^2-4 x^3\right )+e^{2 x^2} \left (20 x^2-4 x^3\right )\right )}{x^3} \, dx\\ &=\frac {1}{3} \int \left (-\frac {4 e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x+2 x^2} (-5+x)}{x}-\frac {2 e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x^2} (-5+x) (1+2 x)}{x^2}-\frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x} \left (-10-4 x-10 e^{2 x} x+x^2+2 e^{2 x} x^2\right )}{x^3}\right ) \, dx\\ &=-\left (\frac {1}{3} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x} \left (-10-4 x-10 e^{2 x} x+x^2+2 e^{2 x} x^2\right )}{x^3} \, dx\right )-\frac {2}{3} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x^2} (-5+x) (1+2 x)}{x^2} \, dx-\frac {4}{3} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x+2 x^2} (-5+x)}{x} \, dx\\ &=-\left (\frac {1}{3} \int \left (\frac {2 e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x} (-5+x)}{x^2}+\frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x} \left (-10-4 x+x^2\right )}{x^3}\right ) \, dx\right )-\frac {2}{3} \int \left (2 e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x^2}-\frac {5 e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x^2}}{x^2}-\frac {9 e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x^2}}{x}\right ) \, dx-\frac {4}{3} \int \left (e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x+2 x^2}-\frac {5 e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x+2 x^2}}{x}\right ) \, dx\\ &=-\left (\frac {1}{3} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x} \left (-10-4 x+x^2\right )}{x^3} \, dx\right )-\frac {2}{3} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x} (-5+x)}{x^2} \, dx-\frac {4}{3} \int e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x^2} \, dx-\frac {4}{3} \int e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x+2 x^2} \, dx+\frac {10}{3} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x^2}}{x^2} \, dx+6 \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x^2}}{x} \, dx+\frac {20}{3} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x+2 x^2}}{x} \, dx\\ &=-\left (\frac {1}{3} \int \left (-\frac {10 e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x}}{x^3}-\frac {4 e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x}}{x^2}+\frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x}}{x}\right ) \, dx\right )-\frac {2}{3} \int \left (-\frac {5 e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x}}{x^2}+\frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x}}{x}\right ) \, dx-\frac {4}{3} \int e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x^2} \, dx-\frac {4}{3} \int e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x+2 x^2} \, dx+\frac {10}{3} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x^2}}{x^2} \, dx+6 \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x^2}}{x} \, dx+\frac {20}{3} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x+2 x^2}}{x} \, dx\\ &=-\left (\frac {1}{3} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x}}{x} \, dx\right )-\frac {2}{3} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x}}{x} \, dx-\frac {4}{3} \int e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x^2} \, dx-\frac {4}{3} \int e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x+2 x^2} \, dx+\frac {4}{3} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x}}{x^2} \, dx+\frac {10}{3} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x}}{x^3} \, dx+\frac {10}{3} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x}}{x^2} \, dx+\frac {10}{3} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x^2}}{x^2} \, dx+6 \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}+x^2}}{x} \, dx+\frac {20}{3} \int \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x+2 x^2}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 42, normalized size = 1.40 \begin {gather*} \frac {e^{-5-e^{2 x}-e^{2 x^2}-2 e^{x+x^2}-x} (-5+x)}{3 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.51, size = 52, normalized size = 1.73 \begin {gather*} \frac {{\left (x - 5\right )} e^{\left (-{\left ({\left (x + 2 \, e^{\left (x^{2} + x\right )} + 5\right )} e^{\left (2 \, x^{2}\right )} + e^{\left (4 \, x^{2}\right )} + e^{\left (2 \, x^{2} + 2 \, x\right )}\right )} e^{\left (-2 \, x^{2}\right )}\right )}}{3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (x^{2} + 4 \, {\left (x^{3} - 5 \, x^{2}\right )} e^{\left (2 \, x^{2}\right )} + 2 \, {\left (2 \, x^{3} - 9 \, x^{2} - 5 \, x\right )} e^{\left (x^{2} + x\right )} + 2 \, {\left (x^{2} - 5 \, x\right )} e^{\left (2 \, x\right )} - 4 \, x - 10\right )} e^{\left (-x - e^{\left (2 \, x^{2}\right )} - 2 \, e^{\left (x^{2} + x\right )} - e^{\left (2 \, x\right )} - 5\right )}}{3 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 37, normalized size = 1.23
method | result | size |
risch | \(\frac {\left (x -5\right ) {\mathrm e}^{-{\mathrm e}^{2 x^{2}}-2 \,{\mathrm e}^{\left (x +1\right ) x}-{\mathrm e}^{2 x}-5-x}}{3 x^{2}}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 36, normalized size = 1.20 \begin {gather*} \frac {{\left (x - 5\right )} e^{\left (-x - e^{\left (2 \, x^{2}\right )} - 2 \, e^{\left (x^{2} + x\right )} - e^{\left (2 \, x\right )} - 5\right )}}{3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.50, size = 39, normalized size = 1.30 \begin {gather*} \frac {{\mathrm {e}}^{-{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{-{\mathrm {e}}^{2\,x^2}}\,{\mathrm {e}}^{-5}\,{\mathrm {e}}^{-2\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^x}\,\left (x-5\right )}{3\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 36, normalized size = 1.20 \begin {gather*} \frac {\left (x - 5\right ) e^{- x - e^{2 x} - 2 e^{x} e^{x^{2}} - e^{2 x^{2}} - 5}}{3 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________