Optimal. Leaf size=21 \[ \frac {x}{3 \left (-5 \left (-4+e^5\right )+\log (5)\right ) \log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 17, normalized size of antiderivative = 0.81, number of steps used = 6, number of rules used = 4, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {12, 2360, 2297, 2298} \begin {gather*} \frac {x}{\left (60-15 e^5+\log (125)\right ) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2297
Rule 2298
Rule 2360
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-1+\log (x)}{\log ^2(x)} \, dx}{60-15 e^5+\log (125)}\\ &=\frac {\int \left (-\frac {1}{\log ^2(x)}+\frac {1}{\log (x)}\right ) \, dx}{60-15 e^5+\log (125)}\\ &=-\frac {\int \frac {1}{\log ^2(x)} \, dx}{60-15 e^5+\log (125)}+\frac {\int \frac {1}{\log (x)} \, dx}{60-15 e^5+\log (125)}\\ &=\frac {x}{\left (60-15 e^5+\log (125)\right ) \log (x)}+\frac {\text {li}(x)}{60-15 e^5+\log (125)}-\frac {\int \frac {1}{\log (x)} \, dx}{60-15 e^5+\log (125)}\\ &=\frac {x}{\left (60-15 e^5+\log (125)\right ) \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 20, normalized size = 0.95 \begin {gather*} \frac {x}{3 \left (20-5 e^5+\log (5)\right ) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 19, normalized size = 0.90 \begin {gather*} -\frac {x}{3 \, {\left (5 \, e^{5} - \log \relax (5) - 20\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 19, normalized size = 0.90 \begin {gather*} -\frac {x}{3 \, {\left (5 \, e^{5} - \log \relax (5) - 20\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 18, normalized size = 0.86
method | result | size |
default | \(\frac {x}{3 \left (\ln \relax (5)-5 \,{\mathrm e}^{5}+20\right ) \ln \relax (x )}\) | \(18\) |
risch | \(\frac {x}{\left (3 \ln \relax (5)-15 \,{\mathrm e}^{5}+60\right ) \ln \relax (x )}\) | \(19\) |
norman | \(-\frac {x}{3 \left (-\ln \relax (5)+5 \,{\mathrm e}^{5}-20\right ) \ln \relax (x )}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.67, size = 26, normalized size = 1.24 \begin {gather*} -\frac {{\rm Ei}\left (\log \relax (x)\right ) - \Gamma \left (-1, -\log \relax (x)\right )}{3 \, {\left (5 \, e^{5} - \log \relax (5) - 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.36, size = 17, normalized size = 0.81 \begin {gather*} \frac {x}{3\,\ln \relax (x)\,\left (\ln \relax (5)-5\,{\mathrm {e}}^5+20\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 0.81 \begin {gather*} - \frac {x}{\left (-60 - 3 \log {\relax (5 )} + 15 e^{5}\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________