Optimal. Leaf size=22 \[ \log \left (\frac {48 \log ^2\left (\log \left (x+\frac {1}{x^2-\log (2)}\right )\right )}{x^4}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.10, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x^2+2 x^5-4 x^3 \log (2)+2 x \log ^2(2)+\left (-4 x^2-4 x^5+\left (4+8 x^3\right ) \log (2)-4 x \log ^2(2)\right ) \log \left (\frac {-1-x^3+x \log (2)}{-x^2+\log (2)}\right ) \log \left (\log \left (\frac {-1-x^3+x \log (2)}{-x^2+\log (2)}\right )\right )}{\left (x^3+x^6+\left (-x-2 x^4\right ) \log (2)+x^2 \log ^2(2)\right ) \log \left (\frac {-1-x^3+x \log (2)}{-x^2+\log (2)}\right ) \log \left (\log \left (\frac {-1-x^3+x \log (2)}{-x^2+\log (2)}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {4}{x}+\frac {2 \left (-2 x+x^4+\log ^2(2)-x^2 \log (4)\right )}{\left (x^2-\log (2)\right ) \left (1+x^3-x \log (2)\right ) \log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right ) \log \left (\log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right )\right )}\right ) \, dx\\ &=-4 \log (x)+2 \int \frac {-2 x+x^4+\log ^2(2)-x^2 \log (4)}{\left (x^2-\log (2)\right ) \left (1+x^3-x \log (2)\right ) \log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right ) \log \left (\log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right )\right )} \, dx\\ &=-4 \log (x)+2 \int \left (-\frac {2 x}{\left (x^2-\log (2)\right ) \log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right ) \log \left (\log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right )\right )}+\frac {3 x^2-\log (2)}{\left (1+x^3-x \log (2)\right ) \log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right ) \log \left (\log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right )\right )}\right ) \, dx\\ &=-4 \log (x)+2 \int \frac {3 x^2-\log (2)}{\left (1+x^3-x \log (2)\right ) \log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right ) \log \left (\log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right )\right )} \, dx-4 \int \frac {x}{\left (x^2-\log (2)\right ) \log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right ) \log \left (\log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right )\right )} \, dx\\ &=-4 \log (x)+2 \int \left (\frac {3 x^2}{\left (1+x^3-x \log (2)\right ) \log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right ) \log \left (\log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right )\right )}+\frac {\log (2)}{\left (-1-x^3+x \log (2)\right ) \log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right ) \log \left (\log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right )\right )}\right ) \, dx-4 \int \left (-\frac {1}{2 \left (-x+\sqrt {\log (2)}\right ) \log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right ) \log \left (\log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right )\right )}+\frac {1}{2 \left (x+\sqrt {\log (2)}\right ) \log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right ) \log \left (\log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right )\right )}\right ) \, dx\\ &=-4 \log (x)+2 \int \frac {1}{\left (-x+\sqrt {\log (2)}\right ) \log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right ) \log \left (\log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right )\right )} \, dx-2 \int \frac {1}{\left (x+\sqrt {\log (2)}\right ) \log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right ) \log \left (\log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right )\right )} \, dx+6 \int \frac {x^2}{\left (1+x^3-x \log (2)\right ) \log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right ) \log \left (\log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right )\right )} \, dx+(2 \log (2)) \int \frac {1}{\left (-1-x^3+x \log (2)\right ) \log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right ) \log \left (\log \left (\frac {1+x^3-x \log (2)}{x^2-\log (2)}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.20, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-4 x^2+2 x^5-4 x^3 \log (2)+2 x \log ^2(2)+\left (-4 x^2-4 x^5+\left (4+8 x^3\right ) \log (2)-4 x \log ^2(2)\right ) \log \left (\frac {-1-x^3+x \log (2)}{-x^2+\log (2)}\right ) \log \left (\log \left (\frac {-1-x^3+x \log (2)}{-x^2+\log (2)}\right )\right )}{\left (x^3+x^6+\left (-x-2 x^4\right ) \log (2)+x^2 \log ^2(2)\right ) \log \left (\frac {-1-x^3+x \log (2)}{-x^2+\log (2)}\right ) \log \left (\log \left (\frac {-1-x^3+x \log (2)}{-x^2+\log (2)}\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 31, normalized size = 1.41 \begin {gather*} -4 \, \log \relax (x) + 2 \, \log \left (\log \left (\log \left (\frac {x^{3} - x \log \relax (2) + 1}{x^{2} - \log \relax (2)}\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [C] time = 0.91, size = 35, normalized size = 1.59 \begin {gather*} -4 \, \log \relax (x) + 2 \, \log \left (\log \left (2 i \, \pi + \log \left (x^{3} - x \log \relax (2) + 1\right ) - \log \left (x^{2} - \log \relax (2)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.06, size = 0, normalized size = 0.00 \[\int \frac {\left (-4 x \ln \relax (2)^{2}+\left (8 x^{3}+4\right ) \ln \relax (2)-4 x^{5}-4 x^{2}\right ) \ln \left (\frac {x \ln \relax (2)-x^{3}-1}{\ln \relax (2)-x^{2}}\right ) \ln \left (\ln \left (\frac {x \ln \relax (2)-x^{3}-1}{\ln \relax (2)-x^{2}}\right )\right )+2 x \ln \relax (2)^{2}-4 x^{3} \ln \relax (2)+2 x^{5}-4 x^{2}}{\left (x^{2} \ln \relax (2)^{2}+\left (-2 x^{4}-x \right ) \ln \relax (2)+x^{6}+x^{3}\right ) \ln \left (\frac {x \ln \relax (2)-x^{3}-1}{\ln \relax (2)-x^{2}}\right ) \ln \left (\ln \left (\frac {x \ln \relax (2)-x^{3}-1}{\ln \relax (2)-x^{2}}\right )\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.67, size = 32, normalized size = 1.45 \begin {gather*} -4 \, \log \relax (x) + 2 \, \log \left (\log \left (\log \left (x^{3} - x \log \relax (2) + 1\right ) - \log \left (x^{2} - \log \relax (2)\right )\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.99, size = 32, normalized size = 1.45 \begin {gather*} 2\,\ln \left (\ln \left (\ln \left (-\frac {x^3-\ln \relax (2)\,x+1}{\ln \relax (2)-x^2}\right )\right )\right )-4\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.12, size = 27, normalized size = 1.23 \begin {gather*} - 4 \log {\relax (x )} + 2 \log {\left (\log {\left (\log {\left (\frac {- x^{3} + x \log {\relax (2 )} - 1}{- x^{2} + \log {\relax (2 )}} \right )} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________