Optimal. Leaf size=27 \[ \log \left (-4-\frac {2}{x^2}+3 \log \left (\frac {4}{4+\frac {2}{8-x}+x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1088-8 x-48 x^2-194 x^3+48 x^4-3 x^5}{-544 x+4 x^2-1064 x^3+6 x^4+48 x^5-4 x^6+\left (816 x^3-6 x^4-36 x^5+3 x^6\right ) \log \left (\frac {-32+4 x}{-34-4 x+x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1088+8 x+48 x^2+194 x^3-48 x^4+3 x^5}{x \left (272-2 x-12 x^2+x^3\right ) \left (2+4 x^2-3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx\\ &=\int \left (\frac {12}{-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )}+\frac {192}{(-8+x) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )}+\frac {4}{x \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )}-\frac {3 x}{-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )}-\frac {12 (34+21 x)}{\left (-34-4 x+x^2\right ) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )}\right ) \, dx\\ &=-\left (3 \int \frac {x}{-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )} \, dx\right )+4 \int \frac {1}{x \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx+12 \int \frac {1}{-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )} \, dx-12 \int \frac {34+21 x}{\left (-34-4 x+x^2\right ) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx+192 \int \frac {1}{(-8+x) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx\\ &=-\left (3 \int \frac {x}{-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )} \, dx\right )+4 \int \frac {1}{x \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx+12 \int \frac {1}{-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )} \, dx-12 \int \left (\frac {34}{\left (-34-4 x+x^2\right ) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )}+\frac {21 x}{\left (-34-4 x+x^2\right ) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )}\right ) \, dx+192 \int \frac {1}{(-8+x) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx\\ &=-\left (3 \int \frac {x}{-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )} \, dx\right )+4 \int \frac {1}{x \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx+12 \int \frac {1}{-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )} \, dx+192 \int \frac {1}{(-8+x) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx-252 \int \frac {x}{\left (-34-4 x+x^2\right ) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx-408 \int \frac {1}{\left (-34-4 x+x^2\right ) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx\\ &=-\left (3 \int \frac {x}{-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )} \, dx\right )+4 \int \frac {1}{x \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx+12 \int \frac {1}{-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )} \, dx+192 \int \frac {1}{(-8+x) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx-252 \int \left (\frac {1+\sqrt {\frac {2}{19}}}{\left (-4-2 \sqrt {38}+2 x\right ) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )}+\frac {1-\sqrt {\frac {2}{19}}}{\left (-4+2 \sqrt {38}+2 x\right ) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )}\right ) \, dx-408 \int \left (-\frac {1}{\sqrt {38} \left (4+2 \sqrt {38}-2 x\right ) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )}-\frac {1}{\sqrt {38} \left (-4+2 \sqrt {38}+2 x\right ) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )}\right ) \, dx\\ &=-\left (3 \int \frac {x}{-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )} \, dx\right )+4 \int \frac {1}{x \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx+12 \int \frac {1}{-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )} \, dx+192 \int \frac {1}{(-8+x) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx+\left (204 \sqrt {\frac {2}{19}}\right ) \int \frac {1}{\left (4+2 \sqrt {38}-2 x\right ) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx+\left (204 \sqrt {\frac {2}{19}}\right ) \int \frac {1}{\left (-4+2 \sqrt {38}+2 x\right ) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx-\frac {1}{19} \left (252 \left (19-\sqrt {38}\right )\right ) \int \frac {1}{\left (-4+2 \sqrt {38}+2 x\right ) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx-\frac {1}{19} \left (252 \left (19+\sqrt {38}\right )\right ) \int \frac {1}{\left (-4-2 \sqrt {38}+2 x\right ) \left (-2-4 x^2+3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.99, size = 34, normalized size = 1.26 \begin {gather*} -2 \log (x)+\log \left (2+4 x^2-3 x^2 \log \left (\frac {4 (-8+x)}{-34-4 x+x^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 33, normalized size = 1.22 \begin {gather*} \log \left (\frac {3 \, x^{2} \log \left (\frac {4 \, {\left (x - 8\right )}}{x^{2} - 4 \, x - 34}\right ) - 4 \, x^{2} - 2}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 34, normalized size = 1.26 \begin {gather*} \log \left (3 \, x^{2} \log \left (\frac {4 \, {\left (x - 8\right )}}{x^{2} - 4 \, x - 34}\right ) - 4 \, x^{2} - 2\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 32, normalized size = 1.19
method | result | size |
risch | \(\ln \left (\ln \left (\frac {4 x -32}{x^{2}-4 x -34}\right )-\frac {2 \left (2 x^{2}+1\right )}{3 x^{2}}\right )\) | \(32\) |
norman | \(-2 \ln \relax (x )+\ln \left (3 x^{2} \ln \left (\frac {4 x -32}{x^{2}-4 x -34}\right )-4 x^{2}-2\right )\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.76, size = 42, normalized size = 1.56 \begin {gather*} \log \left (-\frac {2 \, x^{2} {\left (3 \, \log \relax (2) - 2\right )} - 3 \, x^{2} \log \left (x^{2} - 4 \, x - 34\right ) + 3 \, x^{2} \log \left (x - 8\right ) - 2}{3 \, x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.70, size = 37, normalized size = 1.37 \begin {gather*} \ln \left (x^2\,\ln \left (-\frac {4\,x-32}{-x^2+4\,x+34}\right )-\frac {4\,x^2}{3}-\frac {2}{3}\right )+\ln \left (\frac {1}{x^2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 29, normalized size = 1.07 \begin {gather*} \log {\left (\log {\left (\frac {4 x - 32}{x^{2} - 4 x - 34} \right )} + \frac {- 4 x^{2} - 2}{3 x^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________