Optimal. Leaf size=25 \[ \frac {x}{3-\frac {e^4}{x^2}+x-\log \left (\frac {64}{25 x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-3 e^4 x^2+2 x^4-x^4 \log \left (\frac {64}{25 x}\right )}{e^8+9 x^4+6 x^5+x^6+e^4 \left (-6 x^2-2 x^3\right )+\left (2 e^4 x^2-6 x^4-2 x^5\right ) \log \left (\frac {64}{25 x}\right )+x^4 \log ^2\left (\frac {64}{25 x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-3 e^4 x^2+2 x^4-x^4 \log \left (\frac {64}{25 x}\right )}{\left (e^4-x^2 (3+x)+x^2 \log \left (\frac {64}{25 x}\right )\right )^2} \, dx\\ &=\int \left (\frac {x^2}{-e^4+3 x^2+x^3-x^2 \log \left (\frac {64}{25 x}\right )}-\frac {x^2 \left (2 e^4+x^2+x^3\right )}{\left (e^4-3 x^2-x^3+x^2 \log \left (\frac {64}{25 x}\right )\right )^2}\right ) \, dx\\ &=\int \frac {x^2}{-e^4+3 x^2+x^3-x^2 \log \left (\frac {64}{25 x}\right )} \, dx-\int \frac {x^2 \left (2 e^4+x^2+x^3\right )}{\left (e^4-3 x^2-x^3+x^2 \log \left (\frac {64}{25 x}\right )\right )^2} \, dx\\ &=\int \frac {x^2}{-e^4+3 x^2+x^3-x^2 \log \left (\frac {64}{25 x}\right )} \, dx-\int \left (\frac {2 e^4 x^2}{\left (e^4-3 x^2-x^3+x^2 \log \left (\frac {64}{25 x}\right )\right )^2}+\frac {x^4}{\left (e^4-3 x^2-x^3+x^2 \log \left (\frac {64}{25 x}\right )\right )^2}+\frac {x^5}{\left (e^4-3 x^2-x^3+x^2 \log \left (\frac {64}{25 x}\right )\right )^2}\right ) \, dx\\ &=-\left (\left (2 e^4\right ) \int \frac {x^2}{\left (e^4-3 x^2-x^3+x^2 \log \left (\frac {64}{25 x}\right )\right )^2} \, dx\right )+\int \frac {x^2}{-e^4+3 x^2+x^3-x^2 \log \left (\frac {64}{25 x}\right )} \, dx-\int \frac {x^4}{\left (e^4-3 x^2-x^3+x^2 \log \left (\frac {64}{25 x}\right )\right )^2} \, dx-\int \frac {x^5}{\left (e^4-3 x^2-x^3+x^2 \log \left (\frac {64}{25 x}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.72, size = 33, normalized size = 1.32 \begin {gather*} -\frac {x^3}{e^4-3 x^2-x^3+x^2 \log \left (\frac {64}{25 x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 30, normalized size = 1.20 \begin {gather*} \frac {x^{3}}{x^{3} - x^{2} \log \left (\frac {64}{25 \, x}\right ) + 3 \, x^{2} - e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 27, normalized size = 1.08 \begin {gather*} -\frac {1}{\frac {\log \left (\frac {64}{25 \, x}\right )}{x} - \frac {3}{x} + \frac {e^{4}}{x^{3}} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.32, size = 31, normalized size = 1.24
method | result | size |
risch | \(-\frac {x^{3}}{x^{2} \ln \left (\frac {64}{25 x}\right )-x^{3}+{\mathrm e}^{4}-3 x^{2}}\) | \(31\) |
norman | \(\frac {3 x^{2}-x^{2} \ln \left (\frac {64}{25 x}\right )-{\mathrm e}^{4}}{x^{2} \ln \left (\frac {64}{25 x}\right )-x^{3}+{\mathrm e}^{4}-3 x^{2}}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 34, normalized size = 1.36 \begin {gather*} \frac {x^{3}}{x^{3} + x^{2} {\left (2 \, \log \relax (5) - 6 \, \log \relax (2) + 3\right )} + x^{2} \log \relax (x) - e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.79, size = 30, normalized size = 1.20 \begin {gather*} -\frac {x^3}{{\mathrm {e}}^4-3\,x^2-x^3+x^2\,\ln \left (\frac {64}{25\,x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 26, normalized size = 1.04 \begin {gather*} - \frac {x^{3}}{- x^{3} + x^{2} \log {\left (\frac {64}{25 x} \right )} - 3 x^{2} + e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________