Optimal. Leaf size=29 \[ 2+\frac {(1+x) \left (-2+e^x-\log \left (x^2\right )\right )^2}{x-\log (5+x)} \]
________________________________________________________________________________________
Rubi [F] time = 116.87, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {24 x+48 x^2+8 x^3+e^x \left (-4 x-44 x^2-28 x^3-4 x^4\right )+e^{2 x} \left (-4 x+10 x^2+12 x^3+2 x^4\right )+\left (-40-68 x-12 x^2+e^{2 x} \left (-15 x-13 x^2-2 x^3\right )+e^x \left (20+64 x+32 x^2+4 x^3\right )\right ) \log (5+x)+\log ^2\left (x^2\right ) \left (-4 x+\left (-5 x-x^2\right ) \log (5+x)\right )+\log \left (x^2\right ) \left (4 x+24 x^2+4 x^3+e^x \left (8 x-10 x^2-12 x^3-2 x^4\right )+\left (-20-44 x-8 x^2+e^x \left (20 x+14 x^2+2 x^3\right )\right ) \log (5+x)\right )}{5 x^3+x^4+\left (-10 x^2-2 x^3\right ) \log (5+x)+\left (5 x+x^2\right ) \log ^2(5+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (2-e^x+\log \left (x^2\right )\right ) \left (-2 x \left (-2 \left (3+6 x+x^2\right )+e^x \left (-2+5 x+6 x^2+x^3\right )\right )+(5+x) \left (-4+3 \left (-2+e^x\right ) x+2 e^x x^2\right ) \log (5+x)-x \log \left (x^2\right ) (4+(5+x) \log (5+x))\right )}{x (5+x) (x-\log (5+x))^2} \, dx\\ &=\int \left (\frac {8 \left (3+6 x+x^2\right )}{(5+x) (x-\log (5+x))^2}+\frac {4 \left (3+6 x+x^2\right ) \log \left (x^2\right )}{(5+x) (x-\log (5+x))^2}-\frac {12 \log (5+x)}{(x-\log (5+x))^2}-\frac {8 \log (5+x)}{x (x-\log (5+x))^2}-\frac {6 \log \left (x^2\right ) \log (5+x)}{(x-\log (5+x))^2}-\frac {4 \log \left (x^2\right ) \log (5+x)}{x (x-\log (5+x))^2}-\frac {2 \log \left (x^2\right ) (4+5 \log (5+x)+x \log (5+x))}{(5+x) (x-\log (5+x))^2}-\frac {\log ^2\left (x^2\right ) (4+5 \log (5+x)+x \log (5+x))}{(5+x) (x-\log (5+x))^2}+\frac {e^{2 x} \left (-4+10 x+12 x^2+2 x^3-15 \log (5+x)-13 x \log (5+x)-2 x^2 \log (5+x)\right )}{(5+x) (x-\log (5+x))^2}-\frac {2 e^x \left (2 x+22 x^2+14 x^3+2 x^4-4 x \log \left (x^2\right )+5 x^2 \log \left (x^2\right )+6 x^3 \log \left (x^2\right )+x^4 \log \left (x^2\right )-10 \log (5+x)-32 x \log (5+x)-16 x^2 \log (5+x)-2 x^3 \log (5+x)-10 x \log \left (x^2\right ) \log (5+x)-7 x^2 \log \left (x^2\right ) \log (5+x)-x^3 \log \left (x^2\right ) \log (5+x)\right )}{x (5+x) (x-\log (5+x))^2}\right ) \, dx\\ &=-\left (2 \int \frac {\log \left (x^2\right ) (4+5 \log (5+x)+x \log (5+x))}{(5+x) (x-\log (5+x))^2} \, dx\right )-2 \int \frac {e^x \left (2 x+22 x^2+14 x^3+2 x^4-4 x \log \left (x^2\right )+5 x^2 \log \left (x^2\right )+6 x^3 \log \left (x^2\right )+x^4 \log \left (x^2\right )-10 \log (5+x)-32 x \log (5+x)-16 x^2 \log (5+x)-2 x^3 \log (5+x)-10 x \log \left (x^2\right ) \log (5+x)-7 x^2 \log \left (x^2\right ) \log (5+x)-x^3 \log \left (x^2\right ) \log (5+x)\right )}{x (5+x) (x-\log (5+x))^2} \, dx+4 \int \frac {\left (3+6 x+x^2\right ) \log \left (x^2\right )}{(5+x) (x-\log (5+x))^2} \, dx-4 \int \frac {\log \left (x^2\right ) \log (5+x)}{x (x-\log (5+x))^2} \, dx-6 \int \frac {\log \left (x^2\right ) \log (5+x)}{(x-\log (5+x))^2} \, dx+8 \int \frac {3+6 x+x^2}{(5+x) (x-\log (5+x))^2} \, dx-8 \int \frac {\log (5+x)}{x (x-\log (5+x))^2} \, dx-12 \int \frac {\log (5+x)}{(x-\log (5+x))^2} \, dx-\int \frac {\log ^2\left (x^2\right ) (4+5 \log (5+x)+x \log (5+x))}{(5+x) (x-\log (5+x))^2} \, dx+\int \frac {e^{2 x} \left (-4+10 x+12 x^2+2 x^3-15 \log (5+x)-13 x \log (5+x)-2 x^2 \log (5+x)\right )}{(5+x) (x-\log (5+x))^2} \, dx\\ &=-\left (2 \int \frac {\log \left (x^2\right ) (4+(5+x) \log (5+x))}{(5+x) (x-\log (5+x))^2} \, dx\right )-2 \int \frac {e^x \left (2 x \left (1+11 x+7 x^2+x^3\right )-2 \left (5+16 x+8 x^2+x^3\right ) \log (5+x)+x \log \left (x^2\right ) \left (-4+5 x+6 x^2+x^3-\left (10+7 x+x^2\right ) \log (5+x)\right )\right )}{x (5+x) (x-\log (5+x))^2} \, dx+4 \int \left (\frac {\log \left (x^2\right )}{(x-\log (5+x))^2}+\frac {x \log \left (x^2\right )}{(x-\log (5+x))^2}-\frac {2 \log \left (x^2\right )}{(5+x) (x-\log (5+x))^2}\right ) \, dx-4 \int \left (\frac {\log \left (x^2\right )}{(x-\log (5+x))^2}-\frac {\log \left (x^2\right )}{x (x-\log (5+x))}\right ) \, dx-6 \int \left (\frac {x \log \left (x^2\right )}{(x-\log (5+x))^2}-\frac {\log \left (x^2\right )}{x-\log (5+x)}\right ) \, dx+8 \int \left (\frac {1}{(x-\log (5+x))^2}+\frac {x}{(x-\log (5+x))^2}-\frac {2}{(5+x) (x-\log (5+x))^2}\right ) \, dx-8 \int \left (\frac {1}{(x-\log (5+x))^2}-\frac {1}{x (x-\log (5+x))}\right ) \, dx-12 \int \left (\frac {x}{(x-\log (5+x))^2}+\frac {1}{-x+\log (5+x)}\right ) \, dx+\int \left (\frac {e^{2 x} \left (-4-5 x-x^2\right )}{(5+x) (x-\log (5+x))^2}+\frac {e^{2 x} (3+2 x)}{x-\log (5+x)}\right ) \, dx-\int \frac {\log ^2\left (x^2\right ) (4+(5+x) \log (5+x))}{(5+x) (x-\log (5+x))^2} \, dx\\ &=-\left (2 \int \left (\frac {\left (4+5 x+x^2\right ) \log \left (x^2\right )}{(5+x) (x-\log (5+x))^2}-\frac {\log \left (x^2\right )}{x-\log (5+x)}\right ) \, dx\right )-2 \int \left (-\frac {e^x \left (4+5 x+x^2\right ) \left (2+\log \left (x^2\right )\right )}{(5+x) (x-\log (5+x))^2}+\frac {e^x \left (2+6 x+2 x^2+2 x \log \left (x^2\right )+x^2 \log \left (x^2\right )\right )}{x (x-\log (5+x))}\right ) \, dx+4 \int \frac {x \log \left (x^2\right )}{(x-\log (5+x))^2} \, dx+4 \int \frac {\log \left (x^2\right )}{x (x-\log (5+x))} \, dx-6 \int \frac {x \log \left (x^2\right )}{(x-\log (5+x))^2} \, dx+6 \int \frac {\log \left (x^2\right )}{x-\log (5+x)} \, dx+8 \int \frac {x}{(x-\log (5+x))^2} \, dx-8 \int \frac {\log \left (x^2\right )}{(5+x) (x-\log (5+x))^2} \, dx+8 \int \frac {1}{x (x-\log (5+x))} \, dx-12 \int \frac {x}{(x-\log (5+x))^2} \, dx-12 \int \frac {1}{-x+\log (5+x)} \, dx-16 \int \frac {1}{(5+x) (x-\log (5+x))^2} \, dx-\int \left (\frac {\left (4+5 x+x^2\right ) \log ^2\left (x^2\right )}{(5+x) (x-\log (5+x))^2}-\frac {\log ^2\left (x^2\right )}{x-\log (5+x)}\right ) \, dx+\int \frac {e^{2 x} \left (-4-5 x-x^2\right )}{(5+x) (x-\log (5+x))^2} \, dx+\int \frac {e^{2 x} (3+2 x)}{x-\log (5+x)} \, dx\\ &=-\left (2 \int \frac {\left (4+5 x+x^2\right ) \log \left (x^2\right )}{(5+x) (x-\log (5+x))^2} \, dx\right )+2 \int \frac {e^x \left (4+5 x+x^2\right ) \left (2+\log \left (x^2\right )\right )}{(5+x) (x-\log (5+x))^2} \, dx+2 \int \frac {\log \left (x^2\right )}{x-\log (5+x)} \, dx-2 \int \frac {e^x \left (2+6 x+2 x^2+2 x \log \left (x^2\right )+x^2 \log \left (x^2\right )\right )}{x (x-\log (5+x))} \, dx+4 \int \frac {x \log \left (x^2\right )}{(x-\log (5+x))^2} \, dx+4 \int \frac {\log \left (x^2\right )}{x (x-\log (5+x))} \, dx-6 \int \frac {x \log \left (x^2\right )}{(x-\log (5+x))^2} \, dx+6 \int \frac {\log \left (x^2\right )}{x-\log (5+x)} \, dx+8 \int \frac {x}{(x-\log (5+x))^2} \, dx-8 \int \frac {\log \left (x^2\right )}{(5+x) (x-\log (5+x))^2} \, dx+8 \int \frac {1}{x (x-\log (5+x))} \, dx-12 \int \frac {x}{(x-\log (5+x))^2} \, dx-12 \int \frac {1}{-x+\log (5+x)} \, dx-16 \int \frac {1}{(5+x) (x-\log (5+x))^2} \, dx+\int \left (-\frac {e^{2 x} x}{(x-\log (5+x))^2}-\frac {4 e^{2 x}}{(5+x) (x-\log (5+x))^2}\right ) \, dx+\int \left (\frac {3 e^{2 x}}{x-\log (5+x)}+\frac {2 e^{2 x} x}{x-\log (5+x)}\right ) \, dx-\int \frac {\left (4+5 x+x^2\right ) \log ^2\left (x^2\right )}{(5+x) (x-\log (5+x))^2} \, dx+\int \frac {\log ^2\left (x^2\right )}{x-\log (5+x)} \, dx\\ &=-\left (2 \int \left (\frac {x \log \left (x^2\right )}{(x-\log (5+x))^2}+\frac {4 \log \left (x^2\right )}{(5+x) (x-\log (5+x))^2}\right ) \, dx\right )+2 \int \left (\frac {e^x x \left (2+\log \left (x^2\right )\right )}{(x-\log (5+x))^2}+\frac {4 e^x \left (2+\log \left (x^2\right )\right )}{(5+x) (x-\log (5+x))^2}\right ) \, dx-2 \int \left (\frac {6 e^x}{x-\log (5+x)}+\frac {2 e^x}{x (x-\log (5+x))}+\frac {2 e^x x}{x-\log (5+x)}+\frac {2 e^x \log \left (x^2\right )}{x-\log (5+x)}+\frac {e^x x \log \left (x^2\right )}{x-\log (5+x)}\right ) \, dx+2 \int \frac {e^{2 x} x}{x-\log (5+x)} \, dx+2 \int \frac {\log \left (x^2\right )}{x-\log (5+x)} \, dx+3 \int \frac {e^{2 x}}{x-\log (5+x)} \, dx-4 \int \frac {e^{2 x}}{(5+x) (x-\log (5+x))^2} \, dx+4 \int \frac {x \log \left (x^2\right )}{(x-\log (5+x))^2} \, dx+4 \int \frac {\log \left (x^2\right )}{x (x-\log (5+x))} \, dx-6 \int \frac {x \log \left (x^2\right )}{(x-\log (5+x))^2} \, dx+6 \int \frac {\log \left (x^2\right )}{x-\log (5+x)} \, dx+8 \int \frac {x}{(x-\log (5+x))^2} \, dx-8 \int \frac {\log \left (x^2\right )}{(5+x) (x-\log (5+x))^2} \, dx+8 \int \frac {1}{x (x-\log (5+x))} \, dx-12 \int \frac {x}{(x-\log (5+x))^2} \, dx-12 \int \frac {1}{-x+\log (5+x)} \, dx-16 \int \frac {1}{(5+x) (x-\log (5+x))^2} \, dx-\int \left (\frac {x \log ^2\left (x^2\right )}{(x-\log (5+x))^2}+\frac {4 \log ^2\left (x^2\right )}{(5+x) (x-\log (5+x))^2}\right ) \, dx-\int \frac {e^{2 x} x}{(x-\log (5+x))^2} \, dx+\int \frac {\log ^2\left (x^2\right )}{x-\log (5+x)} \, dx\\ &=-\left (2 \int \frac {x \log \left (x^2\right )}{(x-\log (5+x))^2} \, dx\right )+2 \int \frac {e^x x \left (2+\log \left (x^2\right )\right )}{(x-\log (5+x))^2} \, dx+2 \int \frac {e^{2 x} x}{x-\log (5+x)} \, dx+2 \int \frac {\log \left (x^2\right )}{x-\log (5+x)} \, dx-2 \int \frac {e^x x \log \left (x^2\right )}{x-\log (5+x)} \, dx+3 \int \frac {e^{2 x}}{x-\log (5+x)} \, dx-4 \int \frac {e^{2 x}}{(5+x) (x-\log (5+x))^2} \, dx+4 \int \frac {x \log \left (x^2\right )}{(x-\log (5+x))^2} \, dx-4 \int \frac {\log ^2\left (x^2\right )}{(5+x) (x-\log (5+x))^2} \, dx-4 \int \frac {e^x}{x (x-\log (5+x))} \, dx-4 \int \frac {e^x x}{x-\log (5+x)} \, dx-4 \int \frac {e^x \log \left (x^2\right )}{x-\log (5+x)} \, dx+4 \int \frac {\log \left (x^2\right )}{x (x-\log (5+x))} \, dx-6 \int \frac {x \log \left (x^2\right )}{(x-\log (5+x))^2} \, dx+6 \int \frac {\log \left (x^2\right )}{x-\log (5+x)} \, dx+8 \int \frac {x}{(x-\log (5+x))^2} \, dx-2 \left (8 \int \frac {\log \left (x^2\right )}{(5+x) (x-\log (5+x))^2} \, dx\right )+8 \int \frac {e^x \left (2+\log \left (x^2\right )\right )}{(5+x) (x-\log (5+x))^2} \, dx+8 \int \frac {1}{x (x-\log (5+x))} \, dx-12 \int \frac {x}{(x-\log (5+x))^2} \, dx-12 \int \frac {e^x}{x-\log (5+x)} \, dx-12 \int \frac {1}{-x+\log (5+x)} \, dx-16 \int \frac {1}{(5+x) (x-\log (5+x))^2} \, dx-\int \frac {e^{2 x} x}{(x-\log (5+x))^2} \, dx-\int \frac {x \log ^2\left (x^2\right )}{(x-\log (5+x))^2} \, dx+\int \frac {\log ^2\left (x^2\right )}{x-\log (5+x)} \, dx\\ &=2 \int \left (\frac {2 e^x x}{(x-\log (5+x))^2}+\frac {e^x x \log \left (x^2\right )}{(x-\log (5+x))^2}\right ) \, dx-2 \int \frac {x \log \left (x^2\right )}{(x-\log (5+x))^2} \, dx+2 \int \frac {e^{2 x} x}{x-\log (5+x)} \, dx+2 \int \frac {\log \left (x^2\right )}{x-\log (5+x)} \, dx-2 \int \frac {e^x x \log \left (x^2\right )}{x-\log (5+x)} \, dx+3 \int \frac {e^{2 x}}{x-\log (5+x)} \, dx-4 \int \frac {e^{2 x}}{(5+x) (x-\log (5+x))^2} \, dx+4 \int \frac {x \log \left (x^2\right )}{(x-\log (5+x))^2} \, dx-4 \int \frac {\log ^2\left (x^2\right )}{(5+x) (x-\log (5+x))^2} \, dx-4 \int \frac {e^x}{x (x-\log (5+x))} \, dx-4 \int \frac {e^x x}{x-\log (5+x)} \, dx-4 \int \frac {e^x \log \left (x^2\right )}{x-\log (5+x)} \, dx+4 \int \frac {\log \left (x^2\right )}{x (x-\log (5+x))} \, dx-6 \int \frac {x \log \left (x^2\right )}{(x-\log (5+x))^2} \, dx+6 \int \frac {\log \left (x^2\right )}{x-\log (5+x)} \, dx+8 \int \left (\frac {2 e^x}{(5+x) (x-\log (5+x))^2}+\frac {e^x \log \left (x^2\right )}{(5+x) (x-\log (5+x))^2}\right ) \, dx+8 \int \frac {x}{(x-\log (5+x))^2} \, dx-2 \left (8 \int \frac {\log \left (x^2\right )}{(5+x) (x-\log (5+x))^2} \, dx\right )+8 \int \frac {1}{x (x-\log (5+x))} \, dx-12 \int \frac {x}{(x-\log (5+x))^2} \, dx-12 \int \frac {e^x}{x-\log (5+x)} \, dx-12 \int \frac {1}{-x+\log (5+x)} \, dx-16 \int \frac {1}{(5+x) (x-\log (5+x))^2} \, dx-\int \frac {e^{2 x} x}{(x-\log (5+x))^2} \, dx-\int \frac {x \log ^2\left (x^2\right )}{(x-\log (5+x))^2} \, dx+\int \frac {\log ^2\left (x^2\right )}{x-\log (5+x)} \, dx\\ &=-\left (2 \int \frac {x \log \left (x^2\right )}{(x-\log (5+x))^2} \, dx\right )+2 \int \frac {e^x x \log \left (x^2\right )}{(x-\log (5+x))^2} \, dx+2 \int \frac {e^{2 x} x}{x-\log (5+x)} \, dx+2 \int \frac {\log \left (x^2\right )}{x-\log (5+x)} \, dx-2 \int \frac {e^x x \log \left (x^2\right )}{x-\log (5+x)} \, dx+3 \int \frac {e^{2 x}}{x-\log (5+x)} \, dx+4 \int \frac {e^x x}{(x-\log (5+x))^2} \, dx-4 \int \frac {e^{2 x}}{(5+x) (x-\log (5+x))^2} \, dx+4 \int \frac {x \log \left (x^2\right )}{(x-\log (5+x))^2} \, dx-4 \int \frac {\log ^2\left (x^2\right )}{(5+x) (x-\log (5+x))^2} \, dx-4 \int \frac {e^x}{x (x-\log (5+x))} \, dx-4 \int \frac {e^x x}{x-\log (5+x)} \, dx-4 \int \frac {e^x \log \left (x^2\right )}{x-\log (5+x)} \, dx+4 \int \frac {\log \left (x^2\right )}{x (x-\log (5+x))} \, dx-6 \int \frac {x \log \left (x^2\right )}{(x-\log (5+x))^2} \, dx+6 \int \frac {\log \left (x^2\right )}{x-\log (5+x)} \, dx+8 \int \frac {x}{(x-\log (5+x))^2} \, dx-2 \left (8 \int \frac {\log \left (x^2\right )}{(5+x) (x-\log (5+x))^2} \, dx\right )+8 \int \frac {e^x \log \left (x^2\right )}{(5+x) (x-\log (5+x))^2} \, dx+8 \int \frac {1}{x (x-\log (5+x))} \, dx-12 \int \frac {x}{(x-\log (5+x))^2} \, dx-12 \int \frac {e^x}{x-\log (5+x)} \, dx-12 \int \frac {1}{-x+\log (5+x)} \, dx-16 \int \frac {1}{(5+x) (x-\log (5+x))^2} \, dx+16 \int \frac {e^x}{(5+x) (x-\log (5+x))^2} \, dx-\int \frac {e^{2 x} x}{(x-\log (5+x))^2} \, dx-\int \frac {x \log ^2\left (x^2\right )}{(x-\log (5+x))^2} \, dx+\int \frac {\log ^2\left (x^2\right )}{x-\log (5+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 28, normalized size = 0.97 \begin {gather*} -\frac {(1+x) \left (-2+e^x-\log \left (x^2\right )\right )^2}{-x+\log (5+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.86, size = 58, normalized size = 2.00 \begin {gather*} \frac {{\left (x + 1\right )} \log \left (x^{2}\right )^{2} + {\left (x + 1\right )} e^{\left (2 \, x\right )} - 4 \, {\left (x + 1\right )} e^{x} - 2 \, {\left ({\left (x + 1\right )} e^{x} - 2 \, x - 2\right )} \log \left (x^{2}\right ) + 4 \, x + 4}{x - \log \left (x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.37, size = 86, normalized size = 2.97 \begin {gather*} -\frac {2 \, x e^{x} \log \left (x^{2}\right ) - x \log \left (x^{2}\right )^{2} - x e^{\left (2 \, x\right )} + 4 \, x e^{x} - 4 \, x \log \left (x^{2}\right ) + 2 \, e^{x} \log \left (x^{2}\right ) - \log \left (x^{2}\right )^{2} - 4 \, x - e^{\left (2 \, x\right )} + 4 \, e^{x} - 4 \, \log \left (x^{2}\right ) - 4}{x - \log \left (x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.28, size = 599, normalized size = 20.66
method | result | size |
risch | \(\frac {16+16 x -16 x \,{\mathrm e}^{x} \ln \relax (x )+4 \,{\mathrm e}^{2 x}+32 \ln \relax (x )+16 \ln \relax (x )^{2}-16 \,{\mathrm e}^{x}+4 x \,{\mathrm e}^{2 x}-16 \,{\mathrm e}^{x} \ln \relax (x )+16 x \ln \relax (x )^{2}-16 \,{\mathrm e}^{x} x +32 x \ln \relax (x )+4 i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{x}-8 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{x}-8 i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) \ln \relax (x )+16 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} \ln \relax (x )-\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}+4 i \pi \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{x}-\pi ^{2} x \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}+4 \pi ^{2} x \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-6 \pi ^{2} x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}+4 \pi ^{2} x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}-8 i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}-8 i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+16 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-8 i \ln \relax (x ) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-8 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{x}-8 i \ln \relax (x ) \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+16 i \ln \relax (x ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-8 i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3} \ln \relax (x )+4 i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{x}-8 i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+16 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+4 i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{x}-8 i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-\pi ^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}+4 \pi ^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-6 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}+4 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}-\pi ^{2} x \mathrm {csgn}\left (i x^{2}\right )^{6}}{4 x -4 \ln \left (5+x \right )}\) | \(599\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 53, normalized size = 1.83 \begin {gather*} \frac {4 \, {\left (x + 1\right )} \log \relax (x)^{2} + {\left (x + 1\right )} e^{\left (2 \, x\right )} - 4 \, {\left ({\left (x + 1\right )} \log \relax (x) + x + 1\right )} e^{x} + 8 \, {\left (x + 1\right )} \log \relax (x) + 4 \, x + 4}{x - \log \left (x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.11, size = 743, normalized size = 25.62 \begin {gather*} 16\,\ln \relax (x)+\frac {4}{x+4}+\frac {\frac {2\,\left (2\,{\mathrm {e}}^{2\,x}-8\,{\mathrm {e}}^x-5\,x\,{\mathrm {e}}^{2\,x}+12\,x^2\,{\mathrm {e}}^x+2\,x^3\,{\mathrm {e}}^x-6\,x^2\,{\mathrm {e}}^{2\,x}-x^3\,{\mathrm {e}}^{2\,x}+10\,x\,{\mathrm {e}}^x+8\right )}{x+4}+\frac {\ln \left (x+5\right )\,\left (x+5\right )\,\left (3\,{\mathrm {e}}^{2\,x}-8\,{\mathrm {e}}^x+2\,x\,{\mathrm {e}}^{2\,x}-4\,x\,{\mathrm {e}}^x+4\right )}{x+4}}{x-\ln \left (x+5\right )}+{\ln \left (x^2\right )}^2\,\left (\frac {\frac {4}{x+4}+\ln \left (x+5\right )\,\left (\frac {x+5}{x+4}-\frac {x^3+9\,x^2+20\,x}{x\,{\left (x+4\right )}^2\,\left (x+5\right )}\right )+\frac {x^3+9\,x^2+20\,x}{{\left (x+4\right )}^2\,\left (x+5\right )}}{x-\ln \left (x+5\right )}+1\right )+\frac {{\mathrm {e}}^{2\,x}\,\left (2\,x^2+13\,x+15\right )}{x+4}+\frac {\ln \left (x^2\right )\,\left (\frac {2\,\left (6\,x^2\,{\mathrm {e}}^x-4\,{\mathrm {e}}^x-10\,x+x^3\,{\mathrm {e}}^x+5\,x\,{\mathrm {e}}^x-2\,x^2+8\right )}{x+4}-x\,\left (\frac {4\,x^3+36\,x^2+80\,x}{x\,{\left (x+4\right )}^2\,\left (x+5\right )}-\frac {2\,\left (2\,x^4+34\,x^3+184\,x^2+320\,x\right )}{x\,{\left (x+4\right )}^2\,\left (x+5\right )}+\frac {4\,x^4+56\,x^3+260\,x^2+400\,x}{x\,{\left (x+4\right )}^2\,\left (x+5\right )}-\frac {{\mathrm {e}}^x\,\left (4\,x^3+36\,x^2+80\,x\right )}{x\,{\left (x+4\right )}^2\,\left (x+5\right )}+\frac {{\mathrm {e}}^x\,\left (2\,x^5+32\,x^4+190\,x^3+496\,x^2+480\,x\right )}{x\,{\left (x+4\right )}^2\,\left (x+5\right )}\right )+{\ln \left (x+5\right )}^2\,\left (\frac {4\,x^3+36\,x^2+80\,x}{x^2\,{\left (x+4\right )}^2}-\frac {4\,\left (x+5\right )}{x\,\left (x+4\right )}\right )-\ln \left (x+5\right )\,\left (\frac {4\,x^3+36\,x^2+80\,x}{x\,{\left (x+4\right )}^2}+\frac {2\,\left (x+5\right )\,\left (2\,{\mathrm {e}}^x+x\,{\mathrm {e}}^x-6\right )}{x+4}-\frac {4\,x^3+36\,x^2+80\,x}{x\,{\left (x+4\right )}^2\,\left (x+5\right )}+\frac {2\,\left (2\,x^4+34\,x^3+184\,x^2+320\,x\right )}{x\,{\left (x+4\right )}^2\,\left (x+5\right )}-\frac {4\,x^4+56\,x^3+260\,x^2+400\,x}{x\,{\left (x+4\right )}^2\,\left (x+5\right )}+\frac {{\mathrm {e}}^x\,\left (4\,x^3+36\,x^2+80\,x\right )}{x\,{\left (x+4\right )}^2\,\left (x+5\right )}-\frac {{\mathrm {e}}^x\,\left (2\,x^5+32\,x^4+190\,x^3+496\,x^2+480\,x\right )}{x\,{\left (x+4\right )}^2\,\left (x+5\right )}\right )\right )}{x-\ln \left (x+5\right )}-\frac {{\mathrm {e}}^x\,\left (4\,x^2+28\,x+40\right )}{x+4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.62, size = 155, normalized size = 5.34 \begin {gather*} \frac {\left (x^{2} - x \log {\left (x + 5 \right )} + x - \log {\left (x + 5 \right )}\right ) e^{2 x} + \left (- 2 x^{2} \log {\left (x^{2} \right )} - 4 x^{2} + 2 x \log {\left (x^{2} \right )} \log {\left (x + 5 \right )} - 2 x \log {\left (x^{2} \right )} + 4 x \log {\left (x + 5 \right )} - 4 x + 2 \log {\left (x^{2} \right )} \log {\left (x + 5 \right )} + 4 \log {\left (x + 5 \right )}\right ) e^{x}}{x^{2} - 2 x \log {\left (x + 5 \right )} + \log {\left (x + 5 \right )}^{2}} + \frac {- x \log {\left (x^{2} \right )}^{2} - 4 x \log {\left (x^{2} \right )} - 4 x - \log {\left (x^{2} \right )}^{2} - 4 \log {\left (x^{2} \right )} - 4}{- x + \log {\left (x + 5 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________