Optimal. Leaf size=26 \[ x+\frac {3 x}{-x+x \left (-e^x+2 x\right )}-\log (4) \]
________________________________________________________________________________________
Rubi [F] time = 0.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5+e^{2 x}+e^x (5-4 x)-4 x+4 x^2}{1+e^{2 x}+e^x (2-4 x)-4 x+4 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-5+e^{2 x}+e^x (5-4 x)-4 x+4 x^2}{\left (1+e^x-2 x\right )^2} \, dx\\ &=\int \left (1+\frac {3}{1+e^x-2 x}+\frac {3 (-3+2 x)}{\left (1+e^x-2 x\right )^2}\right ) \, dx\\ &=x+3 \int \frac {1}{1+e^x-2 x} \, dx+3 \int \frac {-3+2 x}{\left (1+e^x-2 x\right )^2} \, dx\\ &=x+3 \int \frac {1}{1+e^x-2 x} \, dx+3 \int \left (-\frac {3}{\left (1+e^x-2 x\right )^2}+\frac {2 x}{\left (1+e^x-2 x\right )^2}\right ) \, dx\\ &=x+3 \int \frac {1}{1+e^x-2 x} \, dx+6 \int \frac {x}{\left (1+e^x-2 x\right )^2} \, dx-9 \int \frac {1}{\left (1+e^x-2 x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 14, normalized size = 0.54 \begin {gather*} -\frac {3}{1+e^x-2 x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.03, size = 27, normalized size = 1.04 \begin {gather*} \frac {2 \, x^{2} - x e^{x} - x + 3}{2 \, x - e^{x} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 27, normalized size = 1.04 \begin {gather*} \frac {2 \, x^{2} - x e^{x} - x + 3}{2 \, x - e^{x} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 16, normalized size = 0.62
method | result | size |
risch | \(x +\frac {3}{-{\mathrm e}^{x}+2 x -1}\) | \(16\) |
norman | \(\frac {-x +2 x^{2}-{\mathrm e}^{x} x +3}{-{\mathrm e}^{x}+2 x -1}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 27, normalized size = 1.04 \begin {gather*} \frac {2 \, x^{2} - x e^{x} - x + 3}{2 \, x - e^{x} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 13, normalized size = 0.50 \begin {gather*} x-\frac {3}{{\mathrm {e}}^x-2\,x+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 10, normalized size = 0.38 \begin {gather*} x - \frac {3}{- 2 x + e^{x} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________