Optimal. Leaf size=28 \[ \frac {2 \log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right )}{x \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 6.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x \log (x)+4 e^{2 x+4 e^{2 x} x^2} x^2 (8+8 x) \log (x)+\left (2 x+e^{4 e^{2 x} x^2} (-2-2 \log (x))+2 x \log (x)\right ) \log \left (e^{8 e^{2 x} x^2}-2 e^{4 e^{2 x} x^2} x+x^2\right )}{e^{4 e^{2 x} x^2} x^2 \log ^2(x)-x^3 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (\frac {2 x \left (-1+8 e^{2 x \left (1+2 e^{2 x} x\right )} x (1+x)\right ) \log (x)}{e^{4 e^{2 x} x^2}-x}-\log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right ) (1+\log (x))\right )}{x^2 \log ^2(x)} \, dx\\ &=2 \int \frac {\frac {2 x \left (-1+8 e^{2 x \left (1+2 e^{2 x} x\right )} x (1+x)\right ) \log (x)}{e^{4 e^{2 x} x^2}-x}-\log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right ) (1+\log (x))}{x^2 \log ^2(x)} \, dx\\ &=2 \int \left (\frac {16 e^{2 x \left (1+2 e^{2 x} x\right )} (1+x)}{\left (e^{4 e^{2 x} x^2}-x\right ) \log (x)}-\frac {-e^{4 e^{2 x} x^2} \log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right )+x \log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right )-2 x \log (x)-e^{4 e^{2 x} x^2} \log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right ) \log (x)+x \log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right ) \log (x)}{x^2 \left (-e^{4 e^{2 x} x^2}+x\right ) \log ^2(x)}\right ) \, dx\\ &=-\left (2 \int \frac {-e^{4 e^{2 x} x^2} \log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right )+x \log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right )-2 x \log (x)-e^{4 e^{2 x} x^2} \log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right ) \log (x)+x \log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right ) \log (x)}{x^2 \left (-e^{4 e^{2 x} x^2}+x\right ) \log ^2(x)} \, dx\right )+32 \int \frac {e^{2 x \left (1+2 e^{2 x} x\right )} (1+x)}{\left (e^{4 e^{2 x} x^2}-x\right ) \log (x)} \, dx\\ &=-\left (2 \int \frac {2 x \log (x)+\left (e^{4 e^{2 x} x^2}-x\right ) \log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right ) (1+\log (x))}{\left (e^{4 e^{2 x} x^2}-x\right ) x^2 \log ^2(x)} \, dx\right )+32 \int \left (\frac {e^{2 x \left (1+2 e^{2 x} x\right )}}{\left (e^{4 e^{2 x} x^2}-x\right ) \log (x)}+\frac {e^{2 x \left (1+2 e^{2 x} x\right )} x}{\left (e^{4 e^{2 x} x^2}-x\right ) \log (x)}\right ) \, dx\\ &=-\left (2 \int \frac {\frac {2 x \log (x)}{e^{4 e^{2 x} x^2}-x}+\log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right ) (1+\log (x))}{x^2 \log ^2(x)} \, dx\right )+32 \int \frac {e^{2 x \left (1+2 e^{2 x} x\right )}}{\left (e^{4 e^{2 x} x^2}-x\right ) \log (x)} \, dx+32 \int \frac {e^{2 x \left (1+2 e^{2 x} x\right )} x}{\left (e^{4 e^{2 x} x^2}-x\right ) \log (x)} \, dx\\ &=-\left (2 \int \left (\frac {2}{\left (e^{4 e^{2 x} x^2}-x\right ) x \log (x)}+\frac {\log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right ) (1+\log (x))}{x^2 \log ^2(x)}\right ) \, dx\right )+32 \int \frac {e^{2 x \left (1+2 e^{2 x} x\right )}}{\left (e^{4 e^{2 x} x^2}-x\right ) \log (x)} \, dx+32 \int \frac {e^{2 x \left (1+2 e^{2 x} x\right )} x}{\left (e^{4 e^{2 x} x^2}-x\right ) \log (x)} \, dx\\ &=-\left (2 \int \frac {\log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right ) (1+\log (x))}{x^2 \log ^2(x)} \, dx\right )-4 \int \frac {1}{\left (e^{4 e^{2 x} x^2}-x\right ) x \log (x)} \, dx+32 \int \frac {e^{2 x \left (1+2 e^{2 x} x\right )}}{\left (e^{4 e^{2 x} x^2}-x\right ) \log (x)} \, dx+32 \int \frac {e^{2 x \left (1+2 e^{2 x} x\right )} x}{\left (e^{4 e^{2 x} x^2}-x\right ) \log (x)} \, dx\\ &=-\left (2 \int \left (\frac {\log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right )}{x^2 \log ^2(x)}+\frac {\log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right )}{x^2 \log (x)}\right ) \, dx\right )-4 \int \frac {1}{\left (e^{4 e^{2 x} x^2}-x\right ) x \log (x)} \, dx+32 \int \frac {e^{2 x \left (1+2 e^{2 x} x\right )}}{\left (e^{4 e^{2 x} x^2}-x\right ) \log (x)} \, dx+32 \int \frac {e^{2 x \left (1+2 e^{2 x} x\right )} x}{\left (e^{4 e^{2 x} x^2}-x\right ) \log (x)} \, dx\\ &=-\left (2 \int \frac {\log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right )}{x^2 \log ^2(x)} \, dx\right )-2 \int \frac {\log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right )}{x^2 \log (x)} \, dx-4 \int \frac {1}{\left (e^{4 e^{2 x} x^2}-x\right ) x \log (x)} \, dx+32 \int \frac {e^{2 x \left (1+2 e^{2 x} x\right )}}{\left (e^{4 e^{2 x} x^2}-x\right ) \log (x)} \, dx+32 \int \frac {e^{2 x \left (1+2 e^{2 x} x\right )} x}{\left (e^{4 e^{2 x} x^2}-x\right ) \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 28, normalized size = 1.00 \begin {gather*} \frac {2 \log \left (\left (e^{4 e^{2 x} x^2}-x\right )^2\right )}{x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.18, size = 99, normalized size = 3.54 \begin {gather*} \frac {2 \, \log \left ({\left (x^{2} e^{\left (4 \, x + 4 \, \log \relax (2) + 4 \, \log \relax (x)\right )} - 2 \, x e^{\left (4 \, x + e^{\left (2 \, x + 2 \, \log \relax (2) + 2 \, \log \relax (x)\right )} + 4 \, \log \relax (2) + 4 \, \log \relax (x)\right )} + e^{\left (4 \, x + 2 \, e^{\left (2 \, x + 2 \, \log \relax (2) + 2 \, \log \relax (x)\right )} + 4 \, \log \relax (2) + 4 \, \log \relax (x)\right )}\right )} e^{\left (-4 \, x - 4 \, \log \relax (2) - 4 \, \log \relax (x)\right )}\right )}{x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 37, normalized size = 1.32 \begin {gather*} \frac {2 \, \log \left (x^{2} - 2 \, x e^{\left (4 \, x^{2} e^{\left (2 \, x\right )}\right )} + e^{\left (8 \, x^{2} e^{\left (2 \, x\right )}\right )}\right )}{x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.34, size = 140, normalized size = 5.00
method | result | size |
risch | \(\frac {4 \ln \left (-{\mathrm e}^{4 \,{\mathrm e}^{2 x} x^{2}}+x \right )}{x \ln \relax (x )}-\frac {i \pi \,\mathrm {csgn}\left (i \left (-{\mathrm e}^{4 \,{\mathrm e}^{2 x} x^{2}}+x \right )^{2}\right ) \left (\mathrm {csgn}\left (i \left (-{\mathrm e}^{4 \,{\mathrm e}^{2 x} x^{2}}+x \right )\right )^{2}-2 \,\mathrm {csgn}\left (i \left (-{\mathrm e}^{4 \,{\mathrm e}^{2 x} x^{2}}+x \right )^{2}\right ) \mathrm {csgn}\left (i \left (-{\mathrm e}^{4 \,{\mathrm e}^{2 x} x^{2}}+x \right )\right )+\mathrm {csgn}\left (i \left (-{\mathrm e}^{4 \,{\mathrm e}^{2 x} x^{2}}+x \right )^{2}\right )^{2}\right )}{x \ln \relax (x )}\) | \(140\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 24, normalized size = 0.86 \begin {gather*} \frac {4 \, \log \left (x - e^{\left (4 \, x^{2} e^{\left (2 \, x\right )}\right )}\right )}{x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.67, size = 37, normalized size = 1.32 \begin {gather*} \frac {2\,\ln \left ({\mathrm {e}}^{8\,x^2\,{\mathrm {e}}^{2\,x}}-2\,x\,{\mathrm {e}}^{4\,x^2\,{\mathrm {e}}^{2\,x}}+x^2\right )}{x\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.79, size = 37, normalized size = 1.32 \begin {gather*} \frac {2 \log {\left (x^{2} - 2 x e^{4 x^{2} e^{2 x}} + e^{8 x^{2} e^{2 x}} \right )}}{x \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________