Optimal. Leaf size=12 \[ 3+\log \left (1+25 e^{-x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 10, normalized size of antiderivative = 0.83, number of steps used = 6, number of rules used = 5, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.385, Rules used = {12, 2282, 36, 29, 31} \begin {gather*} \log \left (e^x+25\right )-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 31
Rule 36
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (5 \int \frac {1}{5+\frac {e^x}{5}} \, dx\right )\\ &=-\left (5 \operatorname {Subst}\left (\int \frac {5}{x (25+x)} \, dx,x,e^x\right )\right )\\ &=-\left (25 \operatorname {Subst}\left (\int \frac {1}{x (25+x)} \, dx,x,e^x\right )\right )\\ &=-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )+\operatorname {Subst}\left (\int \frac {1}{25+x} \, dx,x,e^x\right )\\ &=-x+\log \left (25+e^x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 18, normalized size = 1.50 \begin {gather*} -25 \left (\frac {x}{25}-\frac {1}{25} \log \left (25+e^x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 14, normalized size = 1.17 \begin {gather*} -x + \log \left (e^{\left (x - \log \relax (5)\right )} + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.38, size = 16, normalized size = 1.33 \begin {gather*} -x + \log \relax (5) + \log \left (e^{\left (x - \log \relax (5)\right )} + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 14, normalized size = 1.17
method | result | size |
risch | \(\ln \relax (5)-x +\ln \left (\frac {{\mathrm e}^{x}}{5}+5\right )\) | \(14\) |
norman | \(-x +\ln \left ({\mathrm e}^{-\ln \relax (5)+x}+5\right )\) | \(15\) |
derivativedivides | \(\ln \left ({\mathrm e}^{-\ln \relax (5)+x}+5\right )-\ln \left ({\mathrm e}^{-\ln \relax (5)+x}\right )\) | \(22\) |
default | \(\ln \left ({\mathrm e}^{-\ln \relax (5)+x}+5\right )-\ln \left ({\mathrm e}^{-\ln \relax (5)+x}\right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 9, normalized size = 0.75 \begin {gather*} -x + \log \left (e^{x} + 25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.30, size = 11, normalized size = 0.92 \begin {gather*} \ln \left (\frac {{\mathrm {e}}^x}{5}+5\right )-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 7, normalized size = 0.58 \begin {gather*} - x + \log {\left (e^{x} + 25 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________