Optimal. Leaf size=26 \[ -3+2 e^5 \left (-5+x \left (-3 \log (5)+\log ^2\left (e^{5+x}+x\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.41, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6 e^{10+x} \log (5)-6 e^5 x \log (5)+\left (4 e^5 x+4 e^{10+x} x\right ) \log \left (e^{5+x}+x\right )+\left (2 e^{10+x}+2 e^5 x\right ) \log ^2\left (e^{5+x}+x\right )}{e^{5+x}+x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 2 e^5 \left (-3 \log (5)+\frac {2 \left (1+e^{5+x}\right ) x \log \left (e^{5+x}+x\right )}{e^{5+x}+x}+\log ^2\left (e^{5+x}+x\right )\right ) \, dx\\ &=\left (2 e^5\right ) \int \left (-3 \log (5)+\frac {2 \left (1+e^{5+x}\right ) x \log \left (e^{5+x}+x\right )}{e^{5+x}+x}+\log ^2\left (e^{5+x}+x\right )\right ) \, dx\\ &=-6 e^5 x \log (5)+\left (2 e^5\right ) \int \log ^2\left (e^{5+x}+x\right ) \, dx+\left (4 e^5\right ) \int \frac {\left (1+e^{5+x}\right ) x \log \left (e^{5+x}+x\right )}{e^{5+x}+x} \, dx\\ &=-6 e^5 x \log (5)+2 e^5 x^2 \log \left (e^{5+x}+x\right )+\left (2 e^5\right ) \int \log ^2\left (e^{5+x}+x\right ) \, dx-\left (4 e^5\right ) \int \frac {\left (1+e^{5+x}\right ) \left (x^2+2 \int \frac {x}{e^{5+x}+x} \, dx-2 \int \frac {x^2}{e^{5+x}+x} \, dx\right )}{2 \left (e^{5+x}+x\right )} \, dx+\left (4 e^5 \log \left (e^{5+x}+x\right )\right ) \int \frac {x}{e^{5+x}+x} \, dx-\left (4 e^5 \log \left (e^{5+x}+x\right )\right ) \int \frac {x^2}{e^{5+x}+x} \, dx\\ &=-6 e^5 x \log (5)+2 e^5 x^2 \log \left (e^{5+x}+x\right )+\left (2 e^5\right ) \int \log ^2\left (e^{5+x}+x\right ) \, dx-\left (2 e^5\right ) \int \frac {\left (1+e^{5+x}\right ) \left (x^2+2 \int \frac {x}{e^{5+x}+x} \, dx-2 \int \frac {x^2}{e^{5+x}+x} \, dx\right )}{e^{5+x}+x} \, dx+\left (4 e^5 \log \left (e^{5+x}+x\right )\right ) \int \frac {x}{e^{5+x}+x} \, dx-\left (4 e^5 \log \left (e^{5+x}+x\right )\right ) \int \frac {x^2}{e^{5+x}+x} \, dx\\ &=-6 e^5 x \log (5)+2 e^5 x^2 \log \left (e^{5+x}+x\right )+\left (2 e^5\right ) \int \log ^2\left (e^{5+x}+x\right ) \, dx-\left (2 e^5\right ) \int \left (x^2+2 \int \frac {x}{e^{5+x}+x} \, dx-\frac {(-1+x) \left (x^2+2 \int \frac {x}{e^{5+x}+x} \, dx-2 \int \frac {x^2}{e^{5+x}+x} \, dx\right )}{e^{5+x}+x}-2 \int \frac {x^2}{e^{5+x}+x} \, dx\right ) \, dx+\left (4 e^5 \log \left (e^{5+x}+x\right )\right ) \int \frac {x}{e^{5+x}+x} \, dx-\left (4 e^5 \log \left (e^{5+x}+x\right )\right ) \int \frac {x^2}{e^{5+x}+x} \, dx\\ &=-\frac {2}{3} e^5 x^3-6 e^5 x \log (5)+2 e^5 x^2 \log \left (e^{5+x}+x\right )+\left (2 e^5\right ) \int \log ^2\left (e^{5+x}+x\right ) \, dx+\left (2 e^5\right ) \int \frac {(-1+x) \left (x^2+2 \int \frac {x}{e^{5+x}+x} \, dx-2 \int \frac {x^2}{e^{5+x}+x} \, dx\right )}{e^{5+x}+x} \, dx-\left (4 e^5\right ) \int \left (\int \frac {x}{e^{5+x}+x} \, dx\right ) \, dx+\left (4 e^5\right ) \int \left (\int \frac {x^2}{e^{5+x}+x} \, dx\right ) \, dx+\left (4 e^5 \log \left (e^{5+x}+x\right )\right ) \int \frac {x}{e^{5+x}+x} \, dx-\left (4 e^5 \log \left (e^{5+x}+x\right )\right ) \int \frac {x^2}{e^{5+x}+x} \, dx\\ &=-\frac {2}{3} e^5 x^3-6 e^5 x \log (5)+2 e^5 x^2 \log \left (e^{5+x}+x\right )+\left (2 e^5\right ) \int \log ^2\left (e^{5+x}+x\right ) \, dx+\left (2 e^5\right ) \int \left (-\frac {x^2+2 \int \frac {x}{e^{5+x}+x} \, dx-2 \int \frac {x^2}{e^{5+x}+x} \, dx}{e^{5+x}+x}+\frac {x \left (x^2+2 \int \frac {x}{e^{5+x}+x} \, dx-2 \int \frac {x^2}{e^{5+x}+x} \, dx\right )}{e^{5+x}+x}\right ) \, dx-\left (4 e^5\right ) \int \left (\int \frac {x}{e^{5+x}+x} \, dx\right ) \, dx+\left (4 e^5\right ) \int \left (\int \frac {x^2}{e^{5+x}+x} \, dx\right ) \, dx+\left (4 e^5 \log \left (e^{5+x}+x\right )\right ) \int \frac {x}{e^{5+x}+x} \, dx-\left (4 e^5 \log \left (e^{5+x}+x\right )\right ) \int \frac {x^2}{e^{5+x}+x} \, dx\\ &=-\frac {2}{3} e^5 x^3-6 e^5 x \log (5)+2 e^5 x^2 \log \left (e^{5+x}+x\right )+\left (2 e^5\right ) \int \log ^2\left (e^{5+x}+x\right ) \, dx-\left (2 e^5\right ) \int \frac {x^2+2 \int \frac {x}{e^{5+x}+x} \, dx-2 \int \frac {x^2}{e^{5+x}+x} \, dx}{e^{5+x}+x} \, dx+\left (2 e^5\right ) \int \frac {x \left (x^2+2 \int \frac {x}{e^{5+x}+x} \, dx-2 \int \frac {x^2}{e^{5+x}+x} \, dx\right )}{e^{5+x}+x} \, dx-\left (4 e^5\right ) \int \left (\int \frac {x}{e^{5+x}+x} \, dx\right ) \, dx+\left (4 e^5\right ) \int \left (\int \frac {x^2}{e^{5+x}+x} \, dx\right ) \, dx+\left (4 e^5 \log \left (e^{5+x}+x\right )\right ) \int \frac {x}{e^{5+x}+x} \, dx-\left (4 e^5 \log \left (e^{5+x}+x\right )\right ) \int \frac {x^2}{e^{5+x}+x} \, dx\\ &=-\frac {2}{3} e^5 x^3-6 e^5 x \log (5)+2 e^5 x^2 \log \left (e^{5+x}+x\right )+\left (2 e^5\right ) \int \log ^2\left (e^{5+x}+x\right ) \, dx-\left (2 e^5\right ) \int \left (\frac {x^2}{e^{5+x}+x}+\frac {2 \int \frac {x}{e^{5+x}+x} \, dx}{e^{5+x}+x}-\frac {2 \int \frac {x^2}{e^{5+x}+x} \, dx}{e^{5+x}+x}\right ) \, dx+\left (2 e^5\right ) \int \left (\frac {x^3}{e^{5+x}+x}+\frac {2 x \int \frac {x}{e^{5+x}+x} \, dx}{e^{5+x}+x}-\frac {2 x \int \frac {x^2}{e^{5+x}+x} \, dx}{e^{5+x}+x}\right ) \, dx-\left (4 e^5\right ) \int \left (\int \frac {x}{e^{5+x}+x} \, dx\right ) \, dx+\left (4 e^5\right ) \int \left (\int \frac {x^2}{e^{5+x}+x} \, dx\right ) \, dx+\left (4 e^5 \log \left (e^{5+x}+x\right )\right ) \int \frac {x}{e^{5+x}+x} \, dx-\left (4 e^5 \log \left (e^{5+x}+x\right )\right ) \int \frac {x^2}{e^{5+x}+x} \, dx\\ &=-\frac {2}{3} e^5 x^3-6 e^5 x \log (5)+2 e^5 x^2 \log \left (e^{5+x}+x\right )-\left (2 e^5\right ) \int \frac {x^2}{e^{5+x}+x} \, dx+\left (2 e^5\right ) \int \frac {x^3}{e^{5+x}+x} \, dx+\left (2 e^5\right ) \int \log ^2\left (e^{5+x}+x\right ) \, dx-\left (4 e^5\right ) \int \left (\int \frac {x}{e^{5+x}+x} \, dx\right ) \, dx-\left (4 e^5\right ) \int \frac {\int \frac {x}{e^{5+x}+x} \, dx}{e^{5+x}+x} \, dx+\left (4 e^5\right ) \int \frac {x \int \frac {x}{e^{5+x}+x} \, dx}{e^{5+x}+x} \, dx+\left (4 e^5\right ) \int \left (\int \frac {x^2}{e^{5+x}+x} \, dx\right ) \, dx+\left (4 e^5\right ) \int \frac {\int \frac {x^2}{e^{5+x}+x} \, dx}{e^{5+x}+x} \, dx-\left (4 e^5\right ) \int \frac {x \int \frac {x^2}{e^{5+x}+x} \, dx}{e^{5+x}+x} \, dx+\left (4 e^5 \log \left (e^{5+x}+x\right )\right ) \int \frac {x}{e^{5+x}+x} \, dx-\left (4 e^5 \log \left (e^{5+x}+x\right )\right ) \int \frac {x^2}{e^{5+x}+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 23, normalized size = 0.88 \begin {gather*} 2 e^5 \left (-3 x \log (5)+x \log ^2\left (e^{5+x}+x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 28, normalized size = 1.08 \begin {gather*} 2 \, x e^{5} \log \left ({\left (x e^{5} + e^{\left (x + 10\right )}\right )} e^{\left (-5\right )}\right )^{2} - 6 \, x e^{5} \log \relax (5) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 22, normalized size = 0.85 \begin {gather*} 2 \, x e^{5} \log \left (x + e^{\left (x + 5\right )}\right )^{2} - 6 \, x e^{5} \log \relax (5) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 23, normalized size = 0.88
method | result | size |
norman | \(-6 x \,{\mathrm e}^{5} \ln \relax (5)+2 x \,{\mathrm e}^{5} \ln \left (x +{\mathrm e}^{5+x}\right )^{2}\) | \(23\) |
risch | \(-6 x \,{\mathrm e}^{5} \ln \relax (5)+2 x \,{\mathrm e}^{5} \ln \left (x +{\mathrm e}^{5+x}\right )^{2}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 22, normalized size = 0.85 \begin {gather*} 2 \, x e^{5} \log \left (x + e^{\left (x + 5\right )}\right )^{2} - 6 \, x e^{5} \log \relax (5) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.56, size = 20, normalized size = 0.77 \begin {gather*} -2\,x\,{\mathrm {e}}^5\,\left (\ln \left (125\right )-{\ln \left (x+{\mathrm {e}}^5\,{\mathrm {e}}^x\right )}^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 26, normalized size = 1.00 \begin {gather*} 2 x e^{5} \log {\left (x + e^{x + 5} \right )}^{2} - 6 x e^{5} \log {\relax (5 )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________