Optimal. Leaf size=27 \[ 2+\frac {-2+e^{x^2}+x}{4 \left (\frac {2}{e^2}-\frac {6 x}{5}\right )} \]
________________________________________________________________________________________
Rubi [B] time = 0.48, antiderivative size = 58, normalized size of antiderivative = 2.15, number of steps used = 8, number of rules used = 5, integrand size = 54, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.093, Rules used = {27, 12, 6741, 6742, 2288} \begin {gather*} \frac {5 e^{x^2+2} \left (5 x-3 e^2 x^2\right )}{8 x \left (5-3 e^2 x\right )^2}+\frac {5 \left (5-6 e^2\right )}{24 \left (5-3 e^2 x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 2288
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25 e^2-30 e^4+e^{x^2} \left (50 e^2 x+e^4 \left (15-30 x^2\right )\right )}{8 \left (-5+3 e^2 x\right )^2} \, dx\\ &=\frac {1}{8} \int \frac {25 e^2-30 e^4+e^{x^2} \left (50 e^2 x+e^4 \left (15-30 x^2\right )\right )}{\left (-5+3 e^2 x\right )^2} \, dx\\ &=\frac {1}{8} \int \frac {25 e^2 \left (1-\frac {6 e^2}{5}\right )+e^{x^2} \left (50 e^2 x+e^4 \left (15-30 x^2\right )\right )}{\left (5-3 e^2 x\right )^2} \, dx\\ &=\frac {1}{8} \int \frac {5 e^2 \left (3 e^{2+x^2}+5 \left (1-\frac {6 e^2}{5}\right )+10 e^{x^2} x-6 e^{2+x^2} x^2\right )}{\left (5-3 e^2 x\right )^2} \, dx\\ &=\frac {1}{8} \left (5 e^2\right ) \int \frac {3 e^{2+x^2}+5 \left (1-\frac {6 e^2}{5}\right )+10 e^{x^2} x-6 e^{2+x^2} x^2}{\left (5-3 e^2 x\right )^2} \, dx\\ &=\frac {1}{8} \left (5 e^2\right ) \int \left (\frac {5-6 e^2}{\left (-5+3 e^2 x\right )^2}-\frac {e^{x^2} \left (-3 e^2-10 x+6 e^2 x^2\right )}{\left (-5+3 e^2 x\right )^2}\right ) \, dx\\ &=\frac {5 \left (5-6 e^2\right )}{24 \left (5-3 e^2 x\right )}-\frac {1}{8} \left (5 e^2\right ) \int \frac {e^{x^2} \left (-3 e^2-10 x+6 e^2 x^2\right )}{\left (-5+3 e^2 x\right )^2} \, dx\\ &=\frac {5 \left (5-6 e^2\right )}{24 \left (5-3 e^2 x\right )}+\frac {5 e^{2+x^2} \left (5 x-3 e^2 x^2\right )}{8 x \left (5-3 e^2 x\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 37, normalized size = 1.37 \begin {gather*} \frac {5 e^2 \left (5-6 e^2+3 e^{2+x^2}\right )}{8 \left (15 e^2-9 e^4 x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 25, normalized size = 0.93 \begin {gather*} \frac {5 \, {\left (6 \, e^{2} - 3 \, e^{\left (x^{2} + 2\right )} - 5\right )}}{24 \, {\left (3 \, x e^{2} - 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 25, normalized size = 0.93 \begin {gather*} \frac {5 \, {\left (6 \, e^{2} - 3 \, e^{\left (x^{2} + 2\right )} - 5\right )}}{24 \, {\left (3 \, x e^{2} - 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 2.31, size = 33, normalized size = 1.22
method | result | size |
norman | \(\frac {\left (\frac {3 \,{\mathrm e}^{4}}{4}-\frac {5 \,{\mathrm e}^{2}}{8}\right ) x -\frac {5 \,{\mathrm e}^{x^{2}} {\mathrm e}^{2}}{8}}{3 \,{\mathrm e}^{2} x -5}\) | \(33\) |
risch | \(\frac {5 \,{\mathrm e}^{2}}{12 \left ({\mathrm e}^{2} x -\frac {5}{3}\right )}-\frac {25}{72 \left ({\mathrm e}^{2} x -\frac {5}{3}\right )}-\frac {5 \,{\mathrm e}^{x^{2}+2}}{8 \left (3 \,{\mathrm e}^{2} x -5\right )}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 50, normalized size = 1.85 \begin {gather*} \frac {5 \, e^{4}}{4 \, {\left (3 \, x e^{4} - 5 \, e^{2}\right )}} - \frac {25 \, e^{2}}{24 \, {\left (3 \, x e^{4} - 5 \, e^{2}\right )}} - \frac {5 \, e^{\left (x^{2} + 2\right )}}{8 \, {\left (3 \, x e^{2} - 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.25, size = 31, normalized size = 1.15 \begin {gather*} -\frac {5\,{\mathrm {e}}^{x^2+2}-\frac {x\,{\mathrm {e}}^2\,\left (30\,{\mathrm {e}}^2-25\right )}{5}}{24\,x\,{\mathrm {e}}^2-40} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 41, normalized size = 1.52 \begin {gather*} - \frac {- 30 e^{4} + 25 e^{2}}{72 x e^{4} - 120 e^{2}} - \frac {5 e^{2} e^{x^{2}}}{24 x e^{2} - 40} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________