Optimal. Leaf size=24 \[ e^{e^{-\frac {8 x}{3 (1-x)}} \left (9-e^4\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (e^{\frac {8 x}{-3+3 x}} \left (9-e^4\right )+\frac {8 x}{-3+3 x}\right ) \left (-72+8 e^4\right )}{3-6 x+3 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (\left (8 \left (9-e^4\right )\right ) \int \frac {\exp \left (e^{\frac {8 x}{-3+3 x}} \left (9-e^4\right )+\frac {8 x}{-3+3 x}\right )}{3-6 x+3 x^2} \, dx\right )\\ &=-\left (\left (8 \left (9-e^4\right )\right ) \int \frac {\exp \left (e^{\frac {8 x}{-3+3 x}} \left (9-e^4\right )+\frac {8 x}{-3+3 x}\right )}{3 (-1+x)^2} \, dx\right )\\ &=-\left (\frac {1}{3} \left (8 \left (9-e^4\right )\right ) \int \frac {\exp \left (e^{\frac {8 x}{-3+3 x}} \left (9-e^4\right )+\frac {8 x}{-3+3 x}\right )}{(-1+x)^2} \, dx\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 21, normalized size = 0.88 \begin {gather*} e^{-e^{\frac {8 x}{3 (-1+x)}} \left (-9+e^4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 43, normalized size = 1.79 \begin {gather*} e^{\left (-\frac {3 \, {\left ({\left (x - 1\right )} e^{4} - 9 \, x + 9\right )} e^{\left (\frac {8 \, x}{3 \, {\left (x - 1\right )}}\right )} - 8 \, x}{3 \, {\left (x - 1\right )}} - \frac {8 \, x}{3 \, {\left (x - 1\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {8 \, {\left (e^{4} - 9\right )} e^{\left (-{\left (e^{4} - 9\right )} e^{\left (\frac {8 \, x}{3 \, {\left (x - 1\right )}}\right )} + \frac {8 \, x}{3 \, {\left (x - 1\right )}}\right )}}{3 \, {\left (x^{2} - 2 \, x + 1\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.39, size = 51, normalized size = 2.12
method | result | size |
risch | \(\frac {{\mathrm e}^{-\left ({\mathrm e}^{4}-9\right ) {\mathrm e}^{\frac {8 x}{3 \left (x -1\right )}}} {\mathrm e}^{4}}{{\mathrm e}^{4}-9}-\frac {9 \,{\mathrm e}^{-\left ({\mathrm e}^{4}-9\right ) {\mathrm e}^{\frac {8 x}{3 \left (x -1\right )}}}}{{\mathrm e}^{4}-9}\) | \(51\) |
norman | \(\frac {\left (x \,{\mathrm e}^{-\frac {8 x}{3 x -3}} {\mathrm e}^{\left (-{\mathrm e}^{4}+9\right ) {\mathrm e}^{\frac {8 x}{3 x -3}}}-{\mathrm e}^{-\frac {8 x}{3 x -3}} {\mathrm e}^{\left (-{\mathrm e}^{4}+9\right ) {\mathrm e}^{\frac {8 x}{3 x -3}}}\right ) {\mathrm e}^{\frac {8 x}{3 x -3}}}{x -1}\) | \(97\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 26, normalized size = 1.08 \begin {gather*} e^{\left (-e^{\left (\frac {8}{3 \, {\left (x - 1\right )}} + \frac {20}{3}\right )} + 9 \, e^{\left (\frac {8}{3 \, {\left (x - 1\right )}} + \frac {8}{3}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.67, size = 31, normalized size = 1.29 \begin {gather*} {\mathrm {e}}^{9\,{\mathrm {e}}^{\frac {8\,x}{3\,x-3}}}\,{\mathrm {e}}^{-{\mathrm {e}}^4\,{\mathrm {e}}^{\frac {8\,x}{3\,x-3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.45, size = 15, normalized size = 0.62 \begin {gather*} e^{\left (9 - e^{4}\right ) e^{\frac {8 x}{3 x - 3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________