Optimal. Leaf size=32 \[ (3-x) x+\left (-4+\left (5-\left (2+\frac {4}{x}\right )^2-x\right ) x\right ) \log (\log (x)) \]
________________________________________________________________________________________
Rubi [F] time = 0.53, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16-20 x+x^2-x^3+\left (3 x^2-2 x^3\right ) \log (x)+\left (16+x^2-2 x^3\right ) \log (x) \log (\log (x))}{x^2 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-16-20 x+x^2-x^3+3 x^2 \log (x)-2 x^3 \log (x)}{x^2 \log (x)}-\frac {\left (-16-x^2+2 x^3\right ) \log (\log (x))}{x^2}\right ) \, dx\\ &=\int \frac {-16-20 x+x^2-x^3+3 x^2 \log (x)-2 x^3 \log (x)}{x^2 \log (x)} \, dx-\int \frac {\left (-16-x^2+2 x^3\right ) \log (\log (x))}{x^2} \, dx\\ &=\int \left (3-2 x+\frac {-16-20 x+x^2-x^3}{x^2 \log (x)}\right ) \, dx-\int \left (-\log (\log (x))-\frac {16 \log (\log (x))}{x^2}+2 x \log (\log (x))\right ) \, dx\\ &=3 x-x^2-2 \int x \log (\log (x)) \, dx+16 \int \frac {\log (\log (x))}{x^2} \, dx+\int \frac {-16-20 x+x^2-x^3}{x^2 \log (x)} \, dx+\int \log (\log (x)) \, dx\\ &=3 x-x^2-\frac {16 \log (\log (x))}{x}+x \log (\log (x))-x^2 \log (\log (x))+16 \int \frac {1}{x^2 \log (x)} \, dx-\int \frac {1}{\log (x)} \, dx+\int \frac {x}{\log (x)} \, dx+\int \frac {-16-20 x+x^2-x^3}{x^2 \log (x)} \, dx\\ &=3 x-x^2-\frac {16 \log (\log (x))}{x}+x \log (\log (x))-x^2 \log (\log (x))-\text {li}(x)+16 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )+\int \frac {-16-20 x+x^2-x^3}{x^2 \log (x)} \, dx+\operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=3 x-x^2+16 \text {Ei}(-\log (x))+\text {Ei}(2 \log (x))-\frac {16 \log (\log (x))}{x}+x \log (\log (x))-x^2 \log (\log (x))-\text {li}(x)+\int \frac {-16-20 x+x^2-x^3}{x^2 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 35, normalized size = 1.09 \begin {gather*} 3 x-x^2-20 \log (\log (x))-\frac {16 \log (\log (x))}{x}+x \log (\log (x))-x^2 \log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 31, normalized size = 0.97 \begin {gather*} -\frac {x^{3} - 3 \, x^{2} + {\left (x^{3} - x^{2} + 20 \, x + 16\right )} \log \left (\log \relax (x)\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 31, normalized size = 0.97 \begin {gather*} -x^{2} - {\left (x^{2} - x + \frac {16}{x}\right )} \log \left (\log \relax (x)\right ) + 3 \, x - 20 \, \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 33, normalized size = 1.03
method | result | size |
risch | \(-\frac {\left (x^{3}-x^{2}+16\right ) \ln \left (\ln \relax (x )\right )}{x}-x^{2}+3 x -20 \ln \left (\ln \relax (x )\right )\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 35, normalized size = 1.09 \begin {gather*} -x^{2} \log \left (\log \relax (x)\right ) - x^{2} + x \log \left (\log \relax (x)\right ) + 3 \, x - \frac {16 \, \log \left (\log \relax (x)\right )}{x} - 20 \, \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.42, size = 49, normalized size = 1.53 \begin {gather*} 3\,x-20\,\ln \left (\ln \relax (x)\right )+\ln \left (\ln \relax (x)\right )\,\left (\frac {2\,x^2-3\,x^3}{x}-\frac {-2\,x^3+x^2+16}{x}\right )-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 27, normalized size = 0.84 \begin {gather*} - x^{2} + 3 x - 20 \log {\left (\log {\relax (x )} \right )} + \frac {\left (- x^{3} + x^{2} - 16\right ) \log {\left (\log {\relax (x )} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________