Optimal. Leaf size=38 \[ 1-\frac {x}{2-\log (2)}+\frac {\log \left (\frac {-4+x}{-x+x (x-2 (2+\log (x)))}\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 5.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-56+20 x-22 x^2+9 x^3-x^4+\left (28-10 x+x^2\right ) \log (2)+\left (-16-8 x^2+2 x^3+8 \log (2)\right ) \log (x)+\left (-40+18 x-2 x^2+\left (20-9 x+x^2\right ) \log (2)+(-16+4 x+(8-2 x) \log (2)) \log (x)\right ) \log \left (\frac {4-x}{5 x-x^2+2 x \log (x)}\right )}{40 x^2-18 x^3+2 x^4+\left (-20 x^2+9 x^3-x^4\right ) \log (2)+\left (16 x^2-4 x^3+\left (-8 x^2+2 x^3\right ) \log (2)\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-56+20 x-22 x^2+9 x^3-x^4+\left (28-10 x+x^2\right ) \log (2)+\left (-16-8 x^2+2 x^3+8 \log (2)\right ) \log (x)+\left (-40+18 x-2 x^2+\left (20-9 x+x^2\right ) \log (2)+(-16+4 x+(8-2 x) \log (2)) \log (x)\right ) \log \left (\frac {4-x}{5 x-x^2+2 x \log (x)}\right )}{(4-x) x^2 (2-\log (2)) (5-x+2 \log (x))} \, dx\\ &=\frac {\int \frac {-56+20 x-22 x^2+9 x^3-x^4+\left (28-10 x+x^2\right ) \log (2)+\left (-16-8 x^2+2 x^3+8 \log (2)\right ) \log (x)+\left (-40+18 x-2 x^2+\left (20-9 x+x^2\right ) \log (2)+(-16+4 x+(8-2 x) \log (2)) \log (x)\right ) \log \left (\frac {4-x}{5 x-x^2+2 x \log (x)}\right )}{(4-x) x^2 (5-x+2 \log (x))} \, dx}{2-\log (2)}\\ &=\frac {\int \frac {-56+20 x-22 x^2+9 x^3-x^4+\left (28-10 x+x^2\right ) \log (2)+2 \left (-8-4 x^2+x^3+\log (16)\right ) \log (x)+(-4+x) (-2+\log (2)) (-5+x-2 \log (x)) \log \left (\frac {-4+x}{x (-5+x-2 \log (x))}\right )}{(4-x) x^2 (5-x+2 \log (x))} \, dx}{2-\log (2)}\\ &=\frac {\int \left (-\frac {22}{(-4+x) (-5+x-2 \log (x))}-\frac {56}{(-4+x) x^2 (-5+x-2 \log (x))}+\frac {20}{(-4+x) x (-5+x-2 \log (x))}+\frac {9 x}{(-4+x) (-5+x-2 \log (x))}-\frac {x^2}{(-4+x) (-5+x-2 \log (x))}+\frac {\left (28-10 x+x^2\right ) \log (2)}{(-4+x) x^2 (-5+x-2 \log (x))}+\frac {2 \left (-8-4 x^2+x^3+\log (16)\right ) \log (x)}{(-4+x) x^2 (-5+x-2 \log (x))}+\frac {(-2+\log (2)) \log \left (\frac {-4+x}{x (-5+x-2 \log (x))}\right )}{x^2}\right ) \, dx}{2-\log (2)}\\ &=-\frac {\int \frac {x^2}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {2 \int \frac {\left (-8-4 x^2+x^3+\log (16)\right ) \log (x)}{(-4+x) x^2 (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {9 \int \frac {x}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {20 \int \frac {1}{(-4+x) x (-5+x-2 \log (x))} \, dx}{2-\log (2)}-\frac {22 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}-\frac {56 \int \frac {1}{(-4+x) x^2 (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {\log (2) \int \frac {28-10 x+x^2}{(-4+x) x^2 (-5+x-2 \log (x))} \, dx}{2-\log (2)}-\int \frac {\log \left (\frac {-4+x}{x (-5+x-2 \log (x))}\right )}{x^2} \, dx\\ &=\frac {\log \left (\frac {4-x}{x (5-x+2 \log (x))}\right )}{x}-\frac {\int \left (\frac {4}{-5+x-2 \log (x)}+\frac {16}{(-4+x) (-5+x-2 \log (x))}+\frac {x}{-5+x-2 \log (x)}\right ) \, dx}{2-\log (2)}+\frac {2 \int \left (\frac {8+4 x^2-x^3-\log (16)}{2 (-4+x) x^2}+\frac {(-5+x) \left (-8-4 x^2+x^3+\log (16)\right )}{2 (-4+x) x^2 (-5+x-2 \log (x))}\right ) \, dx}{2-\log (2)}+\frac {9 \int \left (\frac {1}{-5+x-2 \log (x)}+\frac {4}{(-4+x) (-5+x-2 \log (x))}\right ) \, dx}{2-\log (2)}+\frac {20 \int \left (\frac {1}{4 (-4+x) (-5+x-2 \log (x))}-\frac {1}{4 x (-5+x-2 \log (x))}\right ) \, dx}{2-\log (2)}-\frac {22 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}-\frac {56 \int \left (\frac {1}{16 (-4+x) (-5+x-2 \log (x))}-\frac {1}{4 x^2 (-5+x-2 \log (x))}-\frac {1}{16 x (-5+x-2 \log (x))}\right ) \, dx}{2-\log (2)}+\frac {\log (2) \int \left (\frac {1}{4 (-4+x) (-5+x-2 \log (x))}-\frac {7}{x^2 (-5+x-2 \log (x))}+\frac {3}{4 x (-5+x-2 \log (x))}\right ) \, dx}{2-\log (2)}+\int \frac {28-10 x+x^2+8 \log (x)}{(-4+x) x^2 (-5+x-2 \log (x))} \, dx\\ &=\frac {\log \left (\frac {4-x}{x (5-x+2 \log (x))}\right )}{x}+\frac {\int \frac {8+4 x^2-x^3-\log (16)}{(-4+x) x^2} \, dx}{2-\log (2)}-\frac {\int \frac {x}{-5+x-2 \log (x)} \, dx}{2-\log (2)}+\frac {\int \frac {(-5+x) \left (-8-4 x^2+x^3+\log (16)\right )}{(-4+x) x^2 (-5+x-2 \log (x))} \, dx}{2-\log (2)}-\frac {7 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2 (2-\log (2))}+\frac {7 \int \frac {1}{x (-5+x-2 \log (x))} \, dx}{2 (2-\log (2))}-\frac {4 \int \frac {1}{-5+x-2 \log (x)} \, dx}{2-\log (2)}+\frac {5 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}-\frac {5 \int \frac {1}{x (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {9 \int \frac {1}{-5+x-2 \log (x)} \, dx}{2-\log (2)}+\frac {14 \int \frac {1}{x^2 (-5+x-2 \log (x))} \, dx}{2-\log (2)}-\frac {16 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}-\frac {22 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {36 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {\log (2) \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{4 (2-\log (2))}+\frac {(3 \log (2)) \int \frac {1}{x (-5+x-2 \log (x))} \, dx}{4 (2-\log (2))}-\frac {(7 \log (2)) \int \frac {1}{x^2 (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\int \left (-\frac {4}{(-4+x) x^2}+\frac {-2+x}{x^2 (-5+x-2 \log (x))}\right ) \, dx\\ &=\frac {\log \left (\frac {4-x}{x (5-x+2 \log (x))}\right )}{x}-4 \int \frac {1}{(-4+x) x^2} \, dx+\frac {\int \left (-1+\frac {8-\log (16)}{16 (-4+x)}+\frac {-8+\log (16)}{4 x^2}+\frac {-8+\log (16)}{16 x}\right ) \, dx}{2-\log (2)}+\frac {\int \left (-\frac {5}{-5+x-2 \log (x)}+\frac {x}{-5+x-2 \log (x)}+\frac {8-\log (16)}{16 (-4+x) (-5+x-2 \log (x))}+\frac {5 (-8+\log (16))}{4 x^2 (-5+x-2 \log (x))}+\frac {-8+\log (16)}{16 x (-5+x-2 \log (x))}\right ) \, dx}{2-\log (2)}-\frac {\int \frac {x}{-5+x-2 \log (x)} \, dx}{2-\log (2)}-\frac {7 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2 (2-\log (2))}+\frac {7 \int \frac {1}{x (-5+x-2 \log (x))} \, dx}{2 (2-\log (2))}-\frac {4 \int \frac {1}{-5+x-2 \log (x)} \, dx}{2-\log (2)}+\frac {5 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}-\frac {5 \int \frac {1}{x (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {9 \int \frac {1}{-5+x-2 \log (x)} \, dx}{2-\log (2)}+\frac {14 \int \frac {1}{x^2 (-5+x-2 \log (x))} \, dx}{2-\log (2)}-\frac {16 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}-\frac {22 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {36 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {\log (2) \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{4 (2-\log (2))}+\frac {(3 \log (2)) \int \frac {1}{x (-5+x-2 \log (x))} \, dx}{4 (2-\log (2))}-\frac {(7 \log (2)) \int \frac {1}{x^2 (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\int \frac {-2+x}{x^2 (-5+x-2 \log (x))} \, dx\\ &=-\frac {x}{2-\log (2)}+\frac {8-\log (16)}{4 x (2-\log (2))}+\frac {(8-\log (16)) \log (4-x)}{16 (2-\log (2))}-\frac {(8-\log (16)) \log (x)}{16 (2-\log (2))}+\frac {\log \left (\frac {4-x}{x (5-x+2 \log (x))}\right )}{x}-4 \int \left (\frac {1}{16 (-4+x)}-\frac {1}{4 x^2}-\frac {1}{16 x}\right ) \, dx-\frac {7 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2 (2-\log (2))}+\frac {7 \int \frac {1}{x (-5+x-2 \log (x))} \, dx}{2 (2-\log (2))}-\frac {4 \int \frac {1}{-5+x-2 \log (x)} \, dx}{2-\log (2)}-\frac {5 \int \frac {1}{-5+x-2 \log (x)} \, dx}{2-\log (2)}+\frac {5 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}-\frac {5 \int \frac {1}{x (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {9 \int \frac {1}{-5+x-2 \log (x)} \, dx}{2-\log (2)}+\frac {14 \int \frac {1}{x^2 (-5+x-2 \log (x))} \, dx}{2-\log (2)}-\frac {16 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}-\frac {22 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {36 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {\log (2) \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{4 (2-\log (2))}+\frac {(3 \log (2)) \int \frac {1}{x (-5+x-2 \log (x))} \, dx}{4 (2-\log (2))}-\frac {(7 \log (2)) \int \frac {1}{x^2 (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {(8-\log (16)) \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{16 (2-\log (2))}-\frac {(8-\log (16)) \int \frac {1}{x (-5+x-2 \log (x))} \, dx}{16 (2-\log (2))}+\frac {(5 (-8+\log (16))) \int \frac {1}{x^2 (-5+x-2 \log (x))} \, dx}{4 (2-\log (2))}+\int \left (-\frac {2}{x^2 (-5+x-2 \log (x))}+\frac {1}{x (-5+x-2 \log (x))}\right ) \, dx\\ &=-\frac {1}{x}-\frac {x}{2-\log (2)}+\frac {8-\log (16)}{4 x (2-\log (2))}-\frac {1}{4} \log (4-x)+\frac {(8-\log (16)) \log (4-x)}{16 (2-\log (2))}+\frac {\log (x)}{4}-\frac {(8-\log (16)) \log (x)}{16 (2-\log (2))}+\frac {\log \left (\frac {4-x}{x (5-x+2 \log (x))}\right )}{x}-2 \int \frac {1}{x^2 (-5+x-2 \log (x))} \, dx-\frac {7 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2 (2-\log (2))}+\frac {7 \int \frac {1}{x (-5+x-2 \log (x))} \, dx}{2 (2-\log (2))}-\frac {4 \int \frac {1}{-5+x-2 \log (x)} \, dx}{2-\log (2)}-\frac {5 \int \frac {1}{-5+x-2 \log (x)} \, dx}{2-\log (2)}+\frac {5 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}-\frac {5 \int \frac {1}{x (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {9 \int \frac {1}{-5+x-2 \log (x)} \, dx}{2-\log (2)}+\frac {14 \int \frac {1}{x^2 (-5+x-2 \log (x))} \, dx}{2-\log (2)}-\frac {16 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}-\frac {22 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {36 \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {\log (2) \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{4 (2-\log (2))}+\frac {(3 \log (2)) \int \frac {1}{x (-5+x-2 \log (x))} \, dx}{4 (2-\log (2))}-\frac {(7 \log (2)) \int \frac {1}{x^2 (-5+x-2 \log (x))} \, dx}{2-\log (2)}+\frac {(8-\log (16)) \int \frac {1}{(-4+x) (-5+x-2 \log (x))} \, dx}{16 (2-\log (2))}-\frac {(8-\log (16)) \int \frac {1}{x (-5+x-2 \log (x))} \, dx}{16 (2-\log (2))}+\frac {(5 (-8+\log (16))) \int \frac {1}{x^2 (-5+x-2 \log (x))} \, dx}{4 (2-\log (2))}+\int \frac {1}{x (-5+x-2 \log (x))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 34, normalized size = 0.89 \begin {gather*} \frac {x+\frac {(-2+\log (2)) \log \left (\frac {-4+x}{x (-5+x-2 \log (x))}\right )}{x}}{-2+\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 39, normalized size = 1.03 \begin {gather*} \frac {x^{2} + {\left (\log \relax (2) - 2\right )} \log \left (\frac {x - 4}{x^{2} - 2 \, x \log \relax (x) - 5 \, x}\right )}{x \log \relax (2) - 2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.46, size = 37, normalized size = 0.97 \begin {gather*} \frac {x}{\log \relax (2) - 2} - \frac {\log \left (x - 2 \, \log \relax (x) - 5\right )}{x} + \frac {\log \left (x - 4\right )}{x} - \frac {\log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.32, size = 660, normalized size = 17.37
method | result | size |
risch | \(-\frac {\ln \left (-2 \ln \relax (x )+x -5\right )}{x}+\frac {-i \pi \ln \relax (2) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{2 \ln \relax (x )-x +5}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x \left (2 \ln \relax (x )-x +5\right )}\right )^{2}-2 i \pi \,\mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{2 \ln \relax (x )-x +5}\right )^{2}+2 i \pi \,\mathrm {csgn}\left (\frac {i}{2 \ln \relax (x )-x +5}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{2 \ln \relax (x )-x +5}\right )^{2}-i \pi \ln \relax (2) \mathrm {csgn}\left (\frac {i}{2 \ln \relax (x )-x +5}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{2 \ln \relax (x )-x +5}\right )^{2}+2 i \pi \,\mathrm {csgn}\left (\frac {i \left (x -4\right )}{2 \ln \relax (x )-x +5}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x \left (2 \ln \relax (x )-x +5\right )}\right )^{2}+2 i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{2 \ln \relax (x )-x +5}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x \left (2 \ln \relax (x )-x +5\right )}\right )+i \pi \ln \relax (2) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{2 \ln \relax (x )-x +5}\right )^{3}-i \pi \ln \relax (2) \mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i}{2 \ln \relax (x )-x +5}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{2 \ln \relax (x )-x +5}\right )+i \pi \ln \relax (2) \mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{2 \ln \relax (x )-x +5}\right )^{2}+2 i \pi \,\mathrm {csgn}\left (i \left (x -4\right )\right ) \mathrm {csgn}\left (\frac {i}{2 \ln \relax (x )-x +5}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{2 \ln \relax (x )-x +5}\right )+i \pi \ln \relax (2) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x \left (2 \ln \relax (x )-x +5\right )}\right )^{2}-2 i \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x \left (2 \ln \relax (x )-x +5\right )}\right )^{2}-i \pi \ln \relax (2) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{2 \ln \relax (x )-x +5}\right ) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x \left (2 \ln \relax (x )-x +5\right )}\right )-2 i \pi \mathrm {csgn}\left (\frac {i \left (x -4\right )}{2 \ln \relax (x )-x +5}\right )^{3}+i \pi \ln \relax (2) \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x \left (2 \ln \relax (x )-x +5\right )}\right )^{3}-2 i \pi \mathrm {csgn}\left (\frac {i \left (x -4\right )}{x \left (2 \ln \relax (x )-x +5\right )}\right )^{3}-2 \ln \relax (2) \ln \relax (x )+2 \ln \relax (2) \ln \left (x -4\right )+2 x^{2}+4 \ln \relax (x )-4 \ln \left (x -4\right )}{2 \left (\ln \relax (2)-2\right ) x}\) | \(660\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 45, normalized size = 1.18 \begin {gather*} \frac {x^{2} - {\left (\log \relax (2) - 2\right )} \log \left (x - 2 \, \log \relax (x) - 5\right ) + {\left (\log \relax (2) - 2\right )} \log \left (x - 4\right ) - {\left (\log \relax (2) - 2\right )} \log \relax (x)}{x {\left (\log \relax (2) - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.13, size = 35, normalized size = 0.92 \begin {gather*} \frac {x}{\ln \relax (2)-2}+\frac {\ln \left (-\frac {x-4}{5\,x+2\,x\,\ln \relax (x)-x^2}\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.64, size = 26, normalized size = 0.68 \begin {gather*} \frac {x}{-2 + \log {\relax (2 )}} + \frac {\log {\left (\frac {4 - x}{- x^{2} + 2 x \log {\relax (x )} + 5 x} \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________