Optimal. Leaf size=25 \[ x-\frac {1}{16} e^4 \left (-x+\frac {5}{x^2-\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.40, antiderivative size = 28, normalized size of antiderivative = 1.12, number of steps used = 5, number of rules used = 4, integrand size = 74, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {6741, 12, 6742, 6686} \begin {gather*} \frac {1}{16} \left (16+e^4\right ) x-\frac {5 e^4}{16 \left (x^2-\log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16 x^5+e^4 \left (-5+10 x^2+x^5\right )+\left (-32 x^3-2 e^4 x^3\right ) \log (x)+\left (16 x+e^4 x\right ) \log ^2(x)}{16 x \left (x^2-\log (x)\right )^2} \, dx\\ &=\frac {1}{16} \int \frac {16 x^5+e^4 \left (-5+10 x^2+x^5\right )+\left (-32 x^3-2 e^4 x^3\right ) \log (x)+\left (16 x+e^4 x\right ) \log ^2(x)}{x \left (x^2-\log (x)\right )^2} \, dx\\ &=\frac {1}{16} \int \left (16 \left (1+\frac {e^4}{16}\right )+\frac {5 e^4 \left (-1+2 x^2\right )}{x \left (x^2-\log (x)\right )^2}\right ) \, dx\\ &=\frac {1}{16} \left (16+e^4\right ) x+\frac {1}{16} \left (5 e^4\right ) \int \frac {-1+2 x^2}{x \left (x^2-\log (x)\right )^2} \, dx\\ &=\frac {1}{16} \left (16+e^4\right ) x-\frac {5 e^4}{16 \left (x^2-\log (x)\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 27, normalized size = 1.08 \begin {gather*} \frac {1}{16} \left (\left (16+e^4\right ) x+\frac {5 e^4}{-x^2+\log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.17, size = 38, normalized size = 1.52 \begin {gather*} \frac {16 \, x^{3} + {\left (x^{3} - 5\right )} e^{4} - {\left (x e^{4} + 16 \, x\right )} \log \relax (x)}{16 \, {\left (x^{2} - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 40, normalized size = 1.60 \begin {gather*} \frac {x^{3} e^{4} + 16 \, x^{3} - x e^{4} \log \relax (x) - 16 \, x \log \relax (x) - 5 \, e^{4}}{16 \, {\left (x^{2} - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 22, normalized size = 0.88
method | result | size |
risch | \(\frac {x \,{\mathrm e}^{4}}{16}+x -\frac {5 \,{\mathrm e}^{4}}{16 \left (x^{2}-\ln \relax (x )\right )}\) | \(22\) |
norman | \(\frac {\left (\frac {{\mathrm e}^{4}}{16}+1\right ) x^{3}+\left (-\frac {{\mathrm e}^{4}}{16}-1\right ) x \ln \relax (x )-\frac {5 \,{\mathrm e}^{4}}{16}}{x^{2}-\ln \relax (x )}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 34, normalized size = 1.36 \begin {gather*} \frac {x^{3} {\left (e^{4} + 16\right )} - x {\left (e^{4} + 16\right )} \log \relax (x) - 5 \, e^{4}}{16 \, {\left (x^{2} - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.53, size = 31, normalized size = 1.24 \begin {gather*} x\,\left (\frac {{\mathrm {e}}^4}{16}+1\right )+\frac {5\,x^2\,{\mathrm {e}}^4}{16\,x^2\,\ln \relax (x)-16\,x^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 22, normalized size = 0.88 \begin {gather*} x \left (1 + \frac {e^{4}}{16}\right ) + \frac {5 e^{4}}{- 16 x^{2} + 16 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________