Optimal. Leaf size=28 \[ -1-x+e^{\left (3+x^2\right )^2} \left (x+x^2\right ) \log (4)-\log (5 x) \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 49, normalized size of antiderivative = 1.75, number of steps used = 5, number of rules used = 3, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {14, 43, 2288} \begin {gather*} \frac {e^{x^4+6 x^2+9} \left (x^5+x^4+3 x^3+3 x^2\right ) \log (4)}{x^3+3 x}-x-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 43
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-1-x}{x}+e^{9+6 x^2+x^4} \left (1+2 x+12 x^2+12 x^3+4 x^4+4 x^5\right ) \log (4)\right ) \, dx\\ &=\log (4) \int e^{9+6 x^2+x^4} \left (1+2 x+12 x^2+12 x^3+4 x^4+4 x^5\right ) \, dx+\int \frac {-1-x}{x} \, dx\\ &=\frac {e^{9+6 x^2+x^4} \left (3 x^2+3 x^3+x^4+x^5\right ) \log (4)}{3 x+x^3}+\int \left (-1-\frac {1}{x}\right ) \, dx\\ &=-x+\frac {e^{9+6 x^2+x^4} \left (3 x^2+3 x^3+x^4+x^5\right ) \log (4)}{3 x+x^3}-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 24, normalized size = 0.86 \begin {gather*} x \left (-1+e^{\left (3+x^2\right )^2} (1+x) \log (4)\right )-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 28, normalized size = 1.00 \begin {gather*} 2 \, {\left (x^{2} + x\right )} e^{\left (x^{4} + 6 \, x^{2} + 9\right )} \log \relax (2) - x - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 42, normalized size = 1.50 \begin {gather*} 2 \, x^{2} e^{\left (x^{4} + 6 \, x^{2} + 9\right )} \log \relax (2) + 2 \, x e^{\left (x^{4} + 6 \, x^{2} + 9\right )} \log \relax (2) - x - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 31, normalized size = 1.11
method | result | size |
risch | \(-x -\ln \relax (x )+\left (2 x^{2} \ln \relax (2)+2 x \ln \relax (2)\right ) {\mathrm e}^{\left (x^{2}+3\right )^{2}}\) | \(31\) |
norman | \(-x +2 \ln \relax (2) {\mathrm e}^{x^{4}+6 x^{2}+9} x +2 \ln \relax (2) {\mathrm e}^{x^{4}+6 x^{2}+9} x^{2}-\ln \relax (x )\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 35, normalized size = 1.25 \begin {gather*} 2 \, {\left (x^{2} e^{9} \log \relax (2) + x e^{9} \log \relax (2)\right )} e^{\left (x^{4} + 6 \, x^{2}\right )} - x - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 42, normalized size = 1.50 \begin {gather*} 2\,x\,{\mathrm {e}}^{x^4+6\,x^2+9}\,\ln \relax (2)-\ln \relax (x)-x+2\,x^2\,{\mathrm {e}}^{x^4+6\,x^2+9}\,\ln \relax (2) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 31, normalized size = 1.11 \begin {gather*} - x + \left (2 x^{2} \log {\relax (2 )} + 2 x \log {\relax (2 )}\right ) e^{x^{4} + 6 x^{2} + 9} - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________