Optimal. Leaf size=26 \[ \frac {1}{(-1+3 (4-x)+x)^2 \left (-\frac {2 e^5}{5}+x^2\right )} \]
________________________________________________________________________________________
Rubi [B] time = 0.18, antiderivative size = 71, normalized size of antiderivative = 2.73, number of steps used = 5, number of rules used = 3, integrand size = 82, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.037, Rules used = {2074, 639, 206} \begin {gather*} -\frac {25 \left (220 x+8 e^5+605\right )}{\left (605-8 e^5\right )^2 \left (2 e^5-5 x^2\right )}+\frac {2200}{\left (605-8 e^5\right )^2 (11-2 x)}+\frac {20}{\left (605-8 e^5\right ) (11-2 x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 206
Rule 639
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {80}{\left (-605+8 e^5\right ) (-11+2 x)^3}+\frac {4400}{\left (-605+8 e^5\right )^2 (-11+2 x)^2}+\frac {250 \left (-88 e^5-\left (605+8 e^5\right ) x\right )}{\left (605-8 e^5\right )^2 \left (2 e^5-5 x^2\right )^2}+\frac {5500}{\left (-605+8 e^5\right )^2 \left (2 e^5-5 x^2\right )}\right ) \, dx\\ &=\frac {20}{\left (605-8 e^5\right ) (11-2 x)^2}+\frac {2200}{\left (605-8 e^5\right )^2 (11-2 x)}+\frac {250 \int \frac {-88 e^5-\left (605+8 e^5\right ) x}{\left (2 e^5-5 x^2\right )^2} \, dx}{\left (605-8 e^5\right )^2}+\frac {5500 \int \frac {1}{2 e^5-5 x^2} \, dx}{\left (605-8 e^5\right )^2}\\ &=\frac {20}{\left (605-8 e^5\right ) (11-2 x)^2}+\frac {2200}{\left (605-8 e^5\right )^2 (11-2 x)}-\frac {25 \left (605+8 e^5+220 x\right )}{\left (605-8 e^5\right )^2 \left (2 e^5-5 x^2\right )}+\frac {550 \sqrt {10} \tanh ^{-1}\left (\frac {\sqrt {\frac {5}{2}} x}{e^{5/2}}\right )}{e^{5/2} \left (605-8 e^5\right )^2}-\frac {5500 \int \frac {1}{2 e^5-5 x^2} \, dx}{\left (605-8 e^5\right )^2}\\ &=\frac {20}{\left (605-8 e^5\right ) (11-2 x)^2}+\frac {2200}{\left (605-8 e^5\right )^2 (11-2 x)}-\frac {25 \left (605+8 e^5+220 x\right )}{\left (605-8 e^5\right )^2 \left (2 e^5-5 x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 22, normalized size = 0.85 \begin {gather*} \frac {5}{(11-2 x)^2 \left (-2 e^5+5 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 34, normalized size = 1.31 \begin {gather*} \frac {5}{20 \, x^{4} - 220 \, x^{3} + 605 \, x^{2} - 2 \, {\left (4 \, x^{2} - 44 \, x + 121\right )} e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 22, normalized size = 0.85
method | result | size |
norman | \(-\frac {5}{\left (2 x -11\right )^{2} \left (-5 x^{2}+2 \,{\mathrm e}^{5}\right )}\) | \(22\) |
risch | \(-\frac {5}{8 \left (-\frac {5 x^{4}}{2}+x^{2} {\mathrm e}^{5}+\frac {55 x^{3}}{2}-11 x \,{\mathrm e}^{5}-\frac {605 x^{2}}{8}+\frac {121 \,{\mathrm e}^{5}}{4}\right )}\) | \(36\) |
gosper | \(-\frac {5}{-20 x^{4}+8 x^{2} {\mathrm e}^{5}+220 x^{3}-88 x \,{\mathrm e}^{5}-605 x^{2}+242 \,{\mathrm e}^{5}}\) | \(37\) |
default | \(-\frac {10 \left (\frac {275 \left (7086244000 \,{\mathrm e}^{10}-2048 \,{\mathrm e}^{5} {\mathrm e}^{20}+619520 \,{\mathrm e}^{5} {\mathrm e}^{15}-70276800 \,{\mathrm e}^{5} {\mathrm e}^{10}-133974300625 \,{\mathrm e}^{5}+619520 \,{\mathrm e}^{20}-70276800 \,{\mathrm e}^{15}-2048 \,{\mathrm e}^{25}\right ) {\mathrm e}^{-5} x +4019229018750 \,{\mathrm e}^{5}+9292800 \,{\mathrm e}^{20}-468512000 \,{\mathrm e}^{15}-40960 \,{\mathrm e}^{25}-35431220000 \,{\mathrm e}^{10}-\frac {405272259390625}{4}}{-\frac {5 x^{2}}{2}+{\mathrm e}^{5}}-880 \left (-128 \,{\mathrm e}^{5} {\mathrm e}^{20}+38720 \,{\mathrm e}^{5} {\mathrm e}^{15}-4392300 \,{\mathrm e}^{5} {\mathrm e}^{10}-38720 \,{\mathrm e}^{20}+4392300 \,{\mathrm e}^{15}+128 \,{\mathrm e}^{25}\right ) {\mathrm e}^{-5} \sqrt {10}\, {\mathrm e}^{-\frac {5}{2}} \arctanh \left (\frac {x \sqrt {10}\, {\mathrm e}^{-\frac {5}{2}}}{2}\right )\right )}{\left (-366025+9680 \,{\mathrm e}^{5}-64 \,{\mathrm e}^{10}\right )^{3}}-\frac {5 \left (3117947360000 \,{\mathrm e}^{5}-1802240 \,{\mathrm e}^{20}+545177600 \,{\mathrm e}^{15}-61843584000 \,{\mathrm e}^{10}-58948692275000\right )}{\left (-366025+9680 \,{\mathrm e}^{5}-64 \,{\mathrm e}^{10}\right )^{3} \left (2 x -11\right )}-\frac {5 \left (-42871776200000 \,{\mathrm e}^{5}+99123200 \,{\mathrm e}^{20}-14992384000 \,{\mathrm e}^{15}+1133799040000 \,{\mathrm e}^{10}-262144 \,{\mathrm e}^{25}+648435615025000\right )}{2 \left (-366025+9680 \,{\mathrm e}^{5}-64 \,{\mathrm e}^{10}\right )^{3} \left (2 x -11\right )^{2}}\) | \(250\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 35, normalized size = 1.35 \begin {gather*} \frac {5}{20 \, x^{4} - 220 \, x^{3} - x^{2} {\left (8 \, e^{5} - 605\right )} + 88 \, x e^{5} - 242 \, e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.18, size = 66, normalized size = 2.54 \begin {gather*} -\frac {20}{\left (8\,{\mathrm {e}}^5-605\right )\,{\left (2\,x-11\right )}^2}-\frac {2200}{{\left (8\,{\mathrm {e}}^5-605\right )}^2\,\left (2\,x-11\right )}-\frac {25\,\left (220\,x+8\,{\mathrm {e}}^5+605\right )}{{\left (8\,{\mathrm {e}}^5-605\right )}^2\,\left (2\,{\mathrm {e}}^5-5\,x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.96, size = 32, normalized size = 1.23 \begin {gather*} \frac {5}{20 x^{4} - 220 x^{3} + x^{2} \left (605 - 8 e^{5}\right ) + 88 x e^{5} - 242 e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________