Optimal. Leaf size=25 \[ \frac {1}{4} e^{-\frac {1}{3} e^{-4+\sqrt [4]{x}}-x \log (3)} \]
________________________________________________________________________________________
Rubi [A] time = 0.48, antiderivative size = 24, normalized size of antiderivative = 0.96, number of steps used = 2, number of rules used = 2, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {12, 6706} \begin {gather*} \frac {1}{4} 3^{-x} e^{-\frac {1}{3} e^{\sqrt [4]{x}-4}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{48} \int \frac {e^{\frac {1}{3} \left (-e^{-4+\sqrt [4]{x}}-3 x \log (3)\right )} \left (-e^{-4+\sqrt [4]{x}} \sqrt [4]{x}-12 x \log (3)\right )}{x} \, dx\\ &=\frac {1}{4} 3^{-x} e^{-\frac {1}{3} e^{-4+\sqrt [4]{x}}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 24, normalized size = 0.96 \begin {gather*} \frac {1}{4} 3^{-x} e^{-\frac {1}{3} e^{-4+\sqrt [4]{x}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.40, size = 58, normalized size = 2.32 \begin {gather*} \frac {1}{4} \, e^{\left (-{\left (x^{\frac {1}{4}} - 4\right )}^{4} \log \relax (3) - 16 \, {\left (x^{\frac {1}{4}} - 4\right )}^{3} \log \relax (3) - 96 \, {\left (x^{\frac {1}{4}} - 4\right )}^{2} \log \relax (3) - 256 \, {\left (x^{\frac {1}{4}} - 4\right )} \log \relax (3) - \frac {1}{3} \, e^{\left (x^{\frac {1}{4}} - 4\right )} - 256 \, \log \relax (3)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.04, size = 0, normalized size = 0.00 \[\int \frac {\left (-x^{\frac {1}{4}} {\mathrm e}^{x^{\frac {1}{4}}-4}-12 x \ln \relax (3)\right ) {\mathrm e}^{-\frac {{\mathrm e}^{x^{\frac {1}{4}}-4}}{3}-x \ln \relax (3)}}{48 x}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.65, size = 17, normalized size = 0.68 \begin {gather*} \frac {1}{4} \, e^{\left (-x \log \relax (3) - \frac {1}{3} \, e^{\left (x^{\frac {1}{4}} - 4\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.60, size = 16, normalized size = 0.64 \begin {gather*} \frac {{\mathrm {e}}^{-\frac {{\mathrm {e}}^{x^{1/4}}\,{\mathrm {e}}^{-4}}{3}}}{4\,3^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________