Optimal. Leaf size=33 \[ 4-e^{4 x}-x^2-\frac {3}{-5+\frac {1}{1+\frac {e^x \log (2)}{x}}} \]
________________________________________________________________________________________
Rubi [F] time = 1.67, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-32 x^3+e^x \left (3-3 x-80 x^2\right ) \log (2)-50 e^{2 x} x \log ^2(2)+e^{4 x} \left (-64 x^2-160 e^x x \log (2)-100 e^{2 x} \log ^2(2)\right )}{16 x^2+40 e^x x \log (2)+25 e^{2 x} \log ^2(2)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-32 x^3+e^x \left (3-3 x-80 x^2\right ) \log (2)-50 e^{2 x} x \log ^2(2)+e^{4 x} \left (-64 x^2-160 e^x x \log (2)-100 e^{2 x} \log ^2(2)\right )}{\left (4 x+e^x \log (32)\right )^2} \, dx\\ &=\int \left (-\frac {100 e^{4 x} \log ^2(2)}{\log ^2(32)}+\frac {4 (-1+x) x \log (8)}{\log (32) \left (4 x+e^x \log (32)\right )^2}-\frac {64 e^{2 x} x^2 \left (75 \log ^2(2)-20 \log (2) \log (32)+\log ^2(32)\right )}{\log ^4(32)}+\frac {512 e^x x^3 \left (50 \log ^2(2)-15 \log (2) \log (32)+\log ^2(32)\right )}{\log ^5(32)}+\frac {2 x \left (-512 x^3 (25 \log (2)-3 \log (32)) (5 \log (2)-\log (32))-25 \log ^2(2) \log ^4(32)\right )}{\log ^6(32)}+\frac {\log (8) \log ^5(32)-x \log (8) \log ^5(32)+614400 x^5 \log ^2(2) \left (1-\frac {\log (32) \log (32768)}{75 \log ^2(2)}\right )}{\log ^6(32) \left (4 x+e^x \log (32)\right )}\right ) \, dx\\ &=\frac {\int \frac {\log (8) \log ^5(32)-x \log (8) \log ^5(32)+614400 x^5 \log ^2(2) \left (1-\frac {\log (32) \log (32768)}{75 \log ^2(2)}\right )}{4 x+e^x \log (32)} \, dx}{\log ^6(32)}+\frac {2 \int x \left (-512 x^3 (25 \log (2)-3 \log (32)) (5 \log (2)-\log (32))-25 \log ^2(2) \log ^4(32)\right ) \, dx}{\log ^6(32)}-\frac {\left (100 \log ^2(2)\right ) \int e^{4 x} \, dx}{\log ^2(32)}+\frac {(4 \log (8)) \int \frac {(-1+x) x}{\left (4 x+e^x \log (32)\right )^2} \, dx}{\log (32)}-\frac {\left (64 \left (75 \log ^2(2)-20 \log (2) \log (32)+\log ^2(32)\right )\right ) \int e^{2 x} x^2 \, dx}{\log ^4(32)}+\frac {\left (512 \left (50 \log ^2(2)-15 \log (2) \log (32)+\log ^2(32)\right )\right ) \int e^x x^3 \, dx}{\log ^5(32)}\\ &=\frac {512 e^x x^3 (5 \log (2)-\log (32))}{\log ^4(32)}-\frac {32 e^{2 x} x^2 (5 \log (2)-\log (32)) (15 \log (2)-\log (32))}{\log ^4(32)}-\frac {25 e^{4 x} \log ^2(2)}{\log ^2(32)}+\frac {\int \left (\frac {\log (8) \log ^5(32)}{4 x+e^x \log (32)}-\frac {x \log (8) \log ^5(32)}{4 x+e^x \log (32)}-\frac {8192 x^5 \left (-75 \log ^2(2)+\log (32) \log (32768)\right )}{4 x+e^x \log (32)}\right ) \, dx}{\log ^6(32)}+\frac {2 \int -25 x \log ^2(2) \log ^4(32) \, dx}{\log ^6(32)}+\frac {(4 \log (8)) \int \left (-\frac {x}{\left (4 x+e^x \log (32)\right )^2}+\frac {x^2}{\left (4 x+e^x \log (32)\right )^2}\right ) \, dx}{\log (32)}+\frac {\left (64 \left (75 \log ^2(2)-20 \log (2) \log (32)+\log ^2(32)\right )\right ) \int e^{2 x} x \, dx}{\log ^4(32)}-\frac {\left (1536 \left (50 \log ^2(2)-15 \log (2) \log (32)+\log ^2(32)\right )\right ) \int e^x x^2 \, dx}{\log ^5(32)}\\ &=-\frac {1536 e^x x^2 (5 \log (2)-\log (32))}{\log ^4(32)}+\frac {512 e^x x^3 (5 \log (2)-\log (32))}{\log ^4(32)}+\frac {32 e^{2 x} x (5 \log (2)-\log (32)) (15 \log (2)-\log (32))}{\log ^4(32)}-\frac {32 e^{2 x} x^2 (5 \log (2)-\log (32)) (15 \log (2)-\log (32))}{\log ^4(32)}-\frac {25 e^{4 x} \log ^2(2)}{\log ^2(32)}-\frac {\left (50 \log ^2(2)\right ) \int x \, dx}{\log ^2(32)}+\frac {\log (8) \int \frac {1}{4 x+e^x \log (32)} \, dx}{\log (32)}-\frac {\log (8) \int \frac {x}{4 x+e^x \log (32)} \, dx}{\log (32)}-\frac {(4 \log (8)) \int \frac {x}{\left (4 x+e^x \log (32)\right )^2} \, dx}{\log (32)}+\frac {(4 \log (8)) \int \frac {x^2}{\left (4 x+e^x \log (32)\right )^2} \, dx}{\log (32)}-\frac {\left (32 \left (75 \log ^2(2)-20 \log (2) \log (32)+\log ^2(32)\right )\right ) \int e^{2 x} \, dx}{\log ^4(32)}+\frac {\left (3072 \left (50 \log ^2(2)-15 \log (2) \log (32)+\log ^2(32)\right )\right ) \int e^x x \, dx}{\log ^5(32)}+\frac {\left (8192 \left (75 \log ^2(2)-\log (32) \log (32768)\right )\right ) \int \frac {x^5}{4 x+e^x \log (32)} \, dx}{\log ^6(32)}\\ &=\frac {3072 e^x x (5 \log (2)-\log (32))}{\log ^4(32)}-\frac {1536 e^x x^2 (5 \log (2)-\log (32))}{\log ^4(32)}+\frac {512 e^x x^3 (5 \log (2)-\log (32))}{\log ^4(32)}-\frac {16 e^{2 x} (5 \log (2)-\log (32)) (15 \log (2)-\log (32))}{\log ^4(32)}+\frac {32 e^{2 x} x (5 \log (2)-\log (32)) (15 \log (2)-\log (32))}{\log ^4(32)}-\frac {32 e^{2 x} x^2 (5 \log (2)-\log (32)) (15 \log (2)-\log (32))}{\log ^4(32)}-\frac {25 e^{4 x} \log ^2(2)}{\log ^2(32)}-\frac {25 x^2 \log ^2(2)}{\log ^2(32)}+\frac {\log (8) \int \frac {1}{4 x+e^x \log (32)} \, dx}{\log (32)}-\frac {\log (8) \int \frac {x}{4 x+e^x \log (32)} \, dx}{\log (32)}-\frac {(4 \log (8)) \int \frac {x}{\left (4 x+e^x \log (32)\right )^2} \, dx}{\log (32)}+\frac {(4 \log (8)) \int \frac {x^2}{\left (4 x+e^x \log (32)\right )^2} \, dx}{\log (32)}-\frac {\left (3072 \left (50 \log ^2(2)-15 \log (2) \log (32)+\log ^2(32)\right )\right ) \int e^x \, dx}{\log ^5(32)}+\frac {\left (8192 \left (75 \log ^2(2)-\log (32) \log (32768)\right )\right ) \int \frac {x^5}{4 x+e^x \log (32)} \, dx}{\log ^6(32)}\\ &=-\frac {3072 e^x (5 \log (2)-\log (32))}{\log ^4(32)}+\frac {3072 e^x x (5 \log (2)-\log (32))}{\log ^4(32)}-\frac {1536 e^x x^2 (5 \log (2)-\log (32))}{\log ^4(32)}+\frac {512 e^x x^3 (5 \log (2)-\log (32))}{\log ^4(32)}-\frac {16 e^{2 x} (5 \log (2)-\log (32)) (15 \log (2)-\log (32))}{\log ^4(32)}+\frac {32 e^{2 x} x (5 \log (2)-\log (32)) (15 \log (2)-\log (32))}{\log ^4(32)}-\frac {32 e^{2 x} x^2 (5 \log (2)-\log (32)) (15 \log (2)-\log (32))}{\log ^4(32)}-\frac {25 e^{4 x} \log ^2(2)}{\log ^2(32)}-\frac {25 x^2 \log ^2(2)}{\log ^2(32)}+\frac {\log (8) \int \frac {1}{4 x+e^x \log (32)} \, dx}{\log (32)}-\frac {\log (8) \int \frac {x}{4 x+e^x \log (32)} \, dx}{\log (32)}-\frac {(4 \log (8)) \int \frac {x}{\left (4 x+e^x \log (32)\right )^2} \, dx}{\log (32)}+\frac {(4 \log (8)) \int \frac {x^2}{\left (4 x+e^x \log (32)\right )^2} \, dx}{\log (32)}+\frac {\left (8192 \left (75 \log ^2(2)-\log (32) \log (32768)\right )\right ) \int \frac {x^5}{4 x+e^x \log (32)} \, dx}{\log ^6(32)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.17, size = 157, normalized size = 4.76 \begin {gather*} -\frac {125 e^{4 x} \log ^2(2) \log ^4(32)+125 x^2 \log ^2(2) \log ^4(32)-\frac {5 x \log (8) \log ^5(32)}{4 x+e^x \log (32)}+80 e^{2 x} \left (1-2 x+2 x^2\right ) \log ^2(32) \left (75 \log ^2(2)-20 \log (2) \log (32)+\log ^2(32)\right )-2560 e^x \left (-6+6 x-3 x^2+x^3\right ) \log (32) \left (50 \log ^2(2)-15 \log (2) \log (32)+\log ^2(32)\right )+1024 x^5 \left (125 \log ^2(2)-40 \log (2) \log (32)+3 \log ^2(32)\right )}{5 \log ^6(32)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 47, normalized size = 1.42 \begin {gather*} -\frac {25 \, x^{2} e^{x} \log \relax (2) + 20 \, x^{3} + 20 \, x e^{\left (4 \, x\right )} + 25 \, e^{\left (5 \, x\right )} \log \relax (2) - 3 \, x}{5 \, {\left (5 \, e^{x} \log \relax (2) + 4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 47, normalized size = 1.42 \begin {gather*} -\frac {25 \, x^{2} e^{x} \log \relax (2) + 20 \, x^{3} + 20 \, x e^{\left (4 \, x\right )} + 25 \, e^{\left (5 \, x\right )} \log \relax (2) - 3 \, x}{5 \, {\left (5 \, e^{x} \log \relax (2) + 4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 28, normalized size = 0.85
method | result | size |
risch | \(-{\mathrm e}^{4 x}-x^{2}+\frac {3 x}{5 \left (5 \,{\mathrm e}^{x} \ln \relax (2)+4 x \right )}\) | \(28\) |
norman | \(\frac {-\frac {3 \,{\mathrm e}^{x} \ln \relax (2)}{4}-4 x^{3}-4 x \,{\mathrm e}^{4 x}-5 \ln \relax (2) {\mathrm e}^{5 x}-5 x^{2} \ln \relax (2) {\mathrm e}^{x}}{5 \,{\mathrm e}^{x} \ln \relax (2)+4 x}\) | \(50\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 47, normalized size = 1.42 \begin {gather*} -\frac {25 \, x^{2} e^{x} \log \relax (2) + 20 \, x^{3} + 20 \, x e^{\left (4 \, x\right )} + 25 \, e^{\left (5 \, x\right )} \log \relax (2) - 3 \, x}{5 \, {\left (5 \, e^{x} \log \relax (2) + 4 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.46, size = 47, normalized size = 1.42 \begin {gather*} -\frac {5\,{\mathrm {e}}^{5\,x}\,\ln \left (32\right )-3\,x+20\,x\,{\mathrm {e}}^{4\,x}+20\,x^3+5\,x^2\,{\mathrm {e}}^x\,\ln \left (32\right )}{5\,\left (4\,x+5\,{\mathrm {e}}^x\,\ln \relax (2)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 22, normalized size = 0.67 \begin {gather*} - x^{2} + \frac {3 x}{20 x + 25 e^{x} \log {\relax (2 )}} - e^{4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________