Optimal. Leaf size=25 \[ \log \left (3+\frac {\log (2)}{x^2}\right )+\log \left (\log \left (\left (1+\frac {4}{x}\right )^2-x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.85, antiderivative size = 47, normalized size of antiderivative = 1.88, number of steps used = 8, number of rules used = 7, integrand size = 127, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.055, Rules used = {6688, 6742, 266, 36, 29, 31, 6684} \begin {gather*} \frac {\log (4) \log \left (3 x^2+\log (2)\right )}{2 \log (2)}+\log \left (\log \left (\frac {16}{x^2}-x+\frac {8}{x}+1\right )\right )-\frac {\log (4) \log (x)}{\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 266
Rule 6684
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\frac {2 \left (16+8 x+x^2-x^3\right ) \log (2)}{3 x^2+\log (2)}-\frac {32+8 x+x^3}{\log \left (1+\frac {16}{x^2}+\frac {8}{x}-x\right )}}{x \left (16+8 x+x^2-x^3\right )} \, dx\\ &=\int \left (-\frac {\log (4)}{x \left (3 x^2+\log (2)\right )}+\frac {32+8 x+x^3}{(-4+x) x \left (4+3 x+x^2\right ) \log \left (1+\frac {16}{x^2}+\frac {8}{x}-x\right )}\right ) \, dx\\ &=-\left (\log (4) \int \frac {1}{x \left (3 x^2+\log (2)\right )} \, dx\right )+\int \frac {32+8 x+x^3}{(-4+x) x \left (4+3 x+x^2\right ) \log \left (1+\frac {16}{x^2}+\frac {8}{x}-x\right )} \, dx\\ &=\log \left (\log \left (1+\frac {16}{x^2}+\frac {8}{x}-x\right )\right )-\frac {1}{2} \log (4) \operatorname {Subst}\left (\int \frac {1}{x (3 x+\log (2))} \, dx,x,x^2\right )\\ &=\log \left (\log \left (1+\frac {16}{x^2}+\frac {8}{x}-x\right )\right )-\frac {\log (4) \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,x^2\right )}{2 \log (2)}+\frac {(3 \log (4)) \operatorname {Subst}\left (\int \frac {1}{3 x+\log (2)} \, dx,x,x^2\right )}{2 \log (2)}\\ &=-\frac {\log (4) \log (x)}{\log (2)}+\frac {\log (4) \log \left (3 x^2+\log (2)\right )}{2 \log (2)}+\log \left (\log \left (1+\frac {16}{x^2}+\frac {8}{x}-x\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 31, normalized size = 1.24 \begin {gather*} -2 \log (x)+\log \left (3 x^2+\log (2)\right )+\log \left (\log \left (1+\frac {16}{x^2}+\frac {8}{x}-x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 34, normalized size = 1.36 \begin {gather*} \log \left (3 \, x^{2} + \log \relax (2)\right ) - 2 \, \log \relax (x) + \log \left (\log \left (-\frac {x^{3} - x^{2} - 8 \, x - 16}{x^{2}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 36, normalized size = 1.44 \begin {gather*} \log \left (3 \, x^{2} + \log \relax (2)\right ) - 2 \, \log \relax (x) + \log \left (-\log \left (-x^{3} + x^{2} + 8 \, x + 16\right ) + \log \left (x^{2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 34, normalized size = 1.36
method | result | size |
default | \(\ln \left (\ln \left (\frac {-x^{3}+x^{2}+8 x +16}{x^{2}}\right )\right )-2 \ln \relax (x )+\ln \left (3 x^{2}+\ln \relax (2)\right )\) | \(34\) |
norman | \(\ln \left (\ln \left (\frac {-x^{3}+x^{2}+8 x +16}{x^{2}}\right )\right )-2 \ln \relax (x )+\ln \left (3 x^{2}+\ln \relax (2)\right )\) | \(34\) |
risch | \(\ln \left (\ln \left (\frac {-x^{3}+x^{2}+8 x +16}{x^{2}}\right )\right )-2 \ln \relax (x )+\ln \left (3 x^{2}+\ln \relax (2)\right )\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 35, normalized size = 1.40 \begin {gather*} \log \left (3 \, x^{2} + \log \relax (2)\right ) - 2 \, \log \relax (x) + \log \left (\log \left (x^{2} + 3 \, x + 4\right ) - 2 \, \log \relax (x) + \log \left (-x + 4\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.15, size = 33, normalized size = 1.32 \begin {gather*} \ln \left (\ln \left (\frac {-x^3+x^2+8\,x+16}{x^2}\right )\right )+\ln \left (x^2+\frac {\ln \relax (2)}{3}\right )-2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.53, size = 44, normalized size = 1.76 \begin {gather*} - 2 \left (\frac {\log {\relax (x )}}{\log {\relax (2 )}} - \frac {\log {\left (x^{2} + \frac {\log {\relax (2 )}}{3} \right )}}{2 \log {\relax (2 )}}\right ) \log {\relax (2 )} + \log {\left (\log {\left (\frac {- x^{3} + x^{2} + 8 x + 16}{x^{2}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________