Optimal. Leaf size=21 \[ 65025 e^{2-2 e^x}+\frac {1}{x}-x+x^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {14, 2282, 2194} \begin {gather*} x^2-x+65025 e^{2-2 e^x}+\frac {1}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-130050 e^{2-2 e^x+x}+\frac {-1-x^2+2 x^3}{x^2}\right ) \, dx\\ &=-\left (130050 \int e^{2-2 e^x+x} \, dx\right )+\int \frac {-1-x^2+2 x^3}{x^2} \, dx\\ &=-\left (130050 \operatorname {Subst}\left (\int e^{2-2 x} \, dx,x,e^x\right )\right )+\int \left (-1-\frac {1}{x^2}+2 x\right ) \, dx\\ &=65025 e^{2-2 e^x}+\frac {1}{x}-x+x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 21, normalized size = 1.00 \begin {gather*} 65025 e^{2-2 e^x}+\frac {1}{x}-x+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 33, normalized size = 1.57 \begin {gather*} \frac {{\left (65025 \, x e^{\left (x - 2 \, e^{x} + 2\right )} + {\left (x^{3} - x^{2} + 1\right )} e^{x}\right )} e^{\left (-x\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.38, size = 35, normalized size = 1.67 \begin {gather*} \frac {{\left (x^{3} e^{x} - x^{2} e^{x} + 65025 \, x e^{\left (x - 2 \, e^{x} + 2\right )} + e^{x}\right )} e^{\left (-x\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 0.95
method | result | size |
risch | \(\frac {1}{x}+65025 \,{\mathrm e}^{-2 \,{\mathrm e}^{x}+2}+x^{2}-x\) | \(20\) |
default | \(x^{2}-x +\frac {1}{x}+65025 \,{\mathrm e}^{2} {\mathrm e}^{-2 \,{\mathrm e}^{x}}\) | \(22\) |
norman | \(\frac {1+x^{3}-x^{2}+65025 x \,{\mathrm e}^{-2 \,{\mathrm e}^{x}+2}}{x}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 19, normalized size = 0.90 \begin {gather*} x^{2} - x + \frac {1}{x} + 65025 \, e^{\left (-2 \, e^{x} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.38, size = 19, normalized size = 0.90 \begin {gather*} 65025\,{\mathrm {e}}^{2-2\,{\mathrm {e}}^x}-x+\frac {1}{x}+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 17, normalized size = 0.81 \begin {gather*} x^{2} - x + 65025 e^{2 - 2 e^{x}} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________