Optimal. Leaf size=19 \[ -1+\frac {e^{-2-2 x}}{16 x}+3 x \]
________________________________________________________________________________________
Rubi [A] time = 0.23, antiderivative size = 18, normalized size of antiderivative = 0.95, number of steps used = 4, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {12, 6742, 2197} \begin {gather*} 3 x+\frac {e^{-2 x-2}}{16 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2197
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{16} \int \frac {e^{-2-2 x} \left (-1-2 x+48 e^{2+2 x} x^2\right )}{x^2} \, dx\\ &=\frac {1}{16} \int \left (48+\frac {e^{-2-2 x} (-1-2 x)}{x^2}\right ) \, dx\\ &=3 x+\frac {1}{16} \int \frac {e^{-2-2 x} (-1-2 x)}{x^2} \, dx\\ &=\frac {e^{-2-2 x}}{16 x}+3 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 19, normalized size = 1.00 \begin {gather*} \frac {1}{16} \left (\frac {e^{-2-2 x}}{x}+48 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 31, normalized size = 1.63 \begin {gather*} \frac {{\left (3 \, x^{2} e^{\left (2 \, x + 4 \, \log \relax (2) + 2\right )} + 1\right )} e^{\left (-2 \, x - 4 \, \log \relax (2) - 2\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 19, normalized size = 1.00 \begin {gather*} \frac {{\left (48 \, x^{2} e^{2} + e^{\left (-2 \, x\right )}\right )} e^{\left (-2\right )}}{16 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 16, normalized size = 0.84
method | result | size |
risch | \(3 x +\frac {{\mathrm e}^{-2 x -2}}{16 x}\) | \(16\) |
norman | \(\frac {\left (1+48 x^{2} {\mathrm e}^{2 x +2}\right ) {\mathrm e}^{-2 x -2}}{16 x}\) | \(32\) |
derivativedivides | \(-\frac {{\mathrm e}^{-4 \ln \relax (2)-2 x -2}}{x}+6 \ln \relax (2)+3 x +3+\frac {2 \,{\mathrm e}^{-4 \ln \relax (2)-2 x -2} \left (1+2 \ln \relax (2)\right )}{x}-\frac {4 \ln \relax (2) {\mathrm e}^{-4 \ln \relax (2)-2 x -2}}{x}\) | \(63\) |
default | \(-\frac {{\mathrm e}^{-4 \ln \relax (2)-2 x -2}}{x}+6 \ln \relax (2)+3 x +3+\frac {2 \,{\mathrm e}^{-4 \ln \relax (2)-2 x -2} \left (1+2 \ln \relax (2)\right )}{x}-\frac {4 \ln \relax (2) {\mathrm e}^{-4 \ln \relax (2)-2 x -2}}{x}\) | \(63\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.45, size = 21, normalized size = 1.11 \begin {gather*} -\frac {1}{8} \, {\rm Ei}\left (-2 \, x\right ) e^{\left (-2\right )} + \frac {1}{8} \, e^{\left (-2\right )} \Gamma \left (-1, 2 \, x\right ) + 3 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 15, normalized size = 0.79 \begin {gather*} 3\,x+\frac {{\mathrm {e}}^{-2\,x}\,{\mathrm {e}}^{-2}}{16\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 14, normalized size = 0.74 \begin {gather*} 3 x + \frac {e^{- 2 x - 2}}{16 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________