Optimal. Leaf size=21 \[ \frac {1}{2} \left (7-x-\frac {8}{5} e^{-8 x} x\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.13, antiderivative size = 45, normalized size of antiderivative = 2.14, number of steps used = 18, number of rules used = 5, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.119, Rules used = {12, 2196, 2194, 2176, 1593} \begin {gather*} \frac {32}{25} e^{-16 x} x^2+\frac {8}{5} e^{-8 x} x^2+\frac {x^2}{2}-\frac {56}{5} e^{-8 x} x-7 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{25} \int \left (-175+25 x+4 e^{-8 x} \left (-70+580 x-80 x^2\right )+16 e^{-16 x} \left (4 x-32 x^2\right )\right ) \, dx\\ &=-7 x+\frac {x^2}{2}+\frac {4}{25} \int e^{-8 x} \left (-70+580 x-80 x^2\right ) \, dx+\frac {16}{25} \int e^{-16 x} \left (4 x-32 x^2\right ) \, dx\\ &=-7 x+\frac {x^2}{2}+\frac {4}{25} \int \left (-70 e^{-8 x}+580 e^{-8 x} x-80 e^{-8 x} x^2\right ) \, dx+\frac {16}{25} \int e^{-16 x} (4-32 x) x \, dx\\ &=-7 x+\frac {x^2}{2}+\frac {16}{25} \int \left (4 e^{-16 x} x-32 e^{-16 x} x^2\right ) \, dx-\frac {56}{5} \int e^{-8 x} \, dx-\frac {64}{5} \int e^{-8 x} x^2 \, dx+\frac {464}{5} \int e^{-8 x} x \, dx\\ &=\frac {7 e^{-8 x}}{5}-7 x-\frac {58}{5} e^{-8 x} x+\frac {x^2}{2}+\frac {8}{5} e^{-8 x} x^2+\frac {64}{25} \int e^{-16 x} x \, dx-\frac {16}{5} \int e^{-8 x} x \, dx+\frac {58}{5} \int e^{-8 x} \, dx-\frac {512}{25} \int e^{-16 x} x^2 \, dx\\ &=-\frac {1}{20} e^{-8 x}-7 x-\frac {4}{25} e^{-16 x} x-\frac {56}{5} e^{-8 x} x+\frac {x^2}{2}+\frac {32}{25} e^{-16 x} x^2+\frac {8}{5} e^{-8 x} x^2+\frac {4}{25} \int e^{-16 x} \, dx-\frac {2}{5} \int e^{-8 x} \, dx-\frac {64}{25} \int e^{-16 x} x \, dx\\ &=-\frac {1}{100} e^{-16 x}-7 x-\frac {56}{5} e^{-8 x} x+\frac {x^2}{2}+\frac {32}{25} e^{-16 x} x^2+\frac {8}{5} e^{-8 x} x^2-\frac {4}{25} \int e^{-16 x} \, dx\\ &=-7 x-\frac {56}{5} e^{-8 x} x+\frac {x^2}{2}+\frac {32}{25} e^{-16 x} x^2+\frac {8}{5} e^{-8 x} x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 41, normalized size = 1.95 \begin {gather*} -7 x+\frac {x^2}{2}+\frac {32}{25} e^{-16 x} x^2-\frac {8}{5} e^{-8 x} \left (7 x-x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 41, normalized size = 1.95 \begin {gather*} \frac {2}{25} \, x^{2} e^{\left (-16 \, x + 4 \, \log \relax (2)\right )} + \frac {1}{2} \, x^{2} + \frac {2}{5} \, {\left (x^{2} - 7 \, x\right )} e^{\left (-8 \, x + 2 \, \log \relax (2)\right )} - 7 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 41, normalized size = 1.95 \begin {gather*} \frac {2}{25} \, x^{2} e^{\left (-16 \, x + 4 \, \log \relax (2)\right )} + \frac {1}{2} \, x^{2} + \frac {2}{5} \, {\left (x^{2} - 7 \, x\right )} e^{\left (-8 \, x + 2 \, \log \relax (2)\right )} - 7 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 34, normalized size = 1.62
method | result | size |
risch | \(\frac {32 \,{\mathrm e}^{-16 x} x^{2}}{25}+\frac {4 \left (10 x^{2}-70 x \right ) {\mathrm e}^{-8 x}}{25}+\frac {x^{2}}{2}-7 x\) | \(34\) |
norman | \(-7 x +\frac {x^{2}}{2}-\frac {56 \,{\mathrm e}^{-8 x} x}{5}+\frac {8 \,{\mathrm e}^{-8 x} x^{2}}{5}+\frac {32 \,{\mathrm e}^{-16 x} x^{2}}{25}\) | \(50\) |
default | \(-7 x +\frac {x^{2}}{2}+\frac {2 \,{\mathrm e}^{-16 x} \left (\ln \relax (2)-4 x \right )^{2}}{25}+\frac {2 \,{\mathrm e}^{-16 x} \ln \relax (2)^{2}}{25}-\frac {4 \,{\mathrm e}^{-16 x} \left (\ln \relax (2)-4 x \right ) \ln \relax (2)}{25}+\frac {14 \,{\mathrm e}^{-8 x} \left (\ln \relax (2)-4 x \right )}{5}+\frac {{\mathrm e}^{-8 x} \left (\ln \relax (2)-4 x \right )^{2}}{10}-\frac {14 \,{\mathrm e}^{-8 x} \ln \relax (2)}{5}+\frac {{\mathrm e}^{-8 x} \ln \relax (2)^{2}}{10}-\frac {{\mathrm e}^{-8 x} \left (\ln \relax (2)-4 x \right ) \ln \relax (2)}{5}\) | \(146\) |
derivativedivides | \(\frac {7 \ln \relax (2)}{4}-7 x +\frac {\left (\ln \relax (2)-4 x \right )^{2}}{32}+\frac {2 \,{\mathrm e}^{-16 x} \left (\ln \relax (2)-4 x \right )^{2}}{25}+\frac {2 \,{\mathrm e}^{-16 x} \ln \relax (2)^{2}}{25}-\frac {4 \,{\mathrm e}^{-16 x} \left (\ln \relax (2)-4 x \right ) \ln \relax (2)}{25}+\frac {14 \,{\mathrm e}^{-8 x} \left (\ln \relax (2)-4 x \right )}{5}+\frac {{\mathrm e}^{-8 x} \left (\ln \relax (2)-4 x \right )^{2}}{10}-\frac {14 \,{\mathrm e}^{-8 x} \ln \relax (2)}{5}+\frac {{\mathrm e}^{-8 x} \ln \relax (2)^{2}}{10}-\frac {{\mathrm e}^{-8 x} \left (\ln \relax (2)-4 x \right ) \ln \relax (2)}{5}-\frac {\left (\ln \relax (2)-4 x \right ) \ln \relax (2)}{16}\) | \(165\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 31, normalized size = 1.48 \begin {gather*} \frac {32}{25} \, x^{2} e^{\left (-16 \, x\right )} + \frac {1}{2} \, x^{2} + \frac {8}{5} \, {\left (x^{2} - 7 \, x\right )} e^{\left (-8 \, x\right )} - 7 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 32, normalized size = 1.52 \begin {gather*} \frac {x\,{\mathrm {e}}^{-16\,x}\,\left (5\,{\mathrm {e}}^{8\,x}+8\right )\,\left (8\,x-70\,{\mathrm {e}}^{8\,x}+5\,x\,{\mathrm {e}}^{8\,x}\right )}{50} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.14, size = 34, normalized size = 1.62 \begin {gather*} \frac {x^{2}}{2} + \frac {32 x^{2} e^{- 16 x}}{25} - 7 x + \frac {\left (200 x^{2} - 1400 x\right ) e^{- 8 x}}{125} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________