Optimal. Leaf size=16 \[ \frac {x^2}{24+e^{-4+x}+4 x} \]
________________________________________________________________________________________
Rubi [F] time = 0.92, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{4+x} \left (2 x-x^2\right )+e^8 \left (48 x+4 x^2\right )}{e^{2 x}+e^{4+x} (48+8 x)+e^8 \left (576+192 x+16 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-e^{4+x} (-2+x) x+4 e^8 x (12+x)}{\left (e^x+4 e^4 (6+x)\right )^2} \, dx\\ &=\int \left (\frac {4 e^8 x^2 (5+x)}{\left (24 e^4+e^x+4 e^4 x\right )^2}-\frac {e^4 (-2+x) x}{24 e^4+e^x+4 e^4 x}\right ) \, dx\\ &=-\left (e^4 \int \frac {(-2+x) x}{24 e^4+e^x+4 e^4 x} \, dx\right )+\left (4 e^8\right ) \int \frac {x^2 (5+x)}{\left (24 e^4+e^x+4 e^4 x\right )^2} \, dx\\ &=-\left (e^4 \int \left (-\frac {2 x}{24 e^4+e^x+4 e^4 x}+\frac {x^2}{24 e^4+e^x+4 e^4 x}\right ) \, dx\right )+\left (4 e^8\right ) \int \left (\frac {5 x^2}{\left (24 e^4+e^x+4 e^4 x\right )^2}+\frac {x^3}{\left (24 e^4+e^x+4 e^4 x\right )^2}\right ) \, dx\\ &=-\left (e^4 \int \frac {x^2}{24 e^4+e^x+4 e^4 x} \, dx\right )+\left (2 e^4\right ) \int \frac {x}{24 e^4+e^x+4 e^4 x} \, dx+\left (4 e^8\right ) \int \frac {x^3}{\left (24 e^4+e^x+4 e^4 x\right )^2} \, dx+\left (20 e^8\right ) \int \frac {x^2}{\left (24 e^4+e^x+4 e^4 x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 21, normalized size = 1.31 \begin {gather*} \frac {e^4 x^2}{e^x+4 e^4 (6+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 20, normalized size = 1.25 \begin {gather*} \frac {x^{2} e^{8}}{4 \, {\left (x + 6\right )} e^{8} + e^{\left (x + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.37, size = 20, normalized size = 1.25 \begin {gather*} \frac {x^{2} e^{4}}{4 \, x e^{4} + 24 \, e^{4} + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 21, normalized size = 1.31
method | result | size |
norman | \(\frac {x^{2} {\mathrm e}^{4}}{4 x \,{\mathrm e}^{4}+24 \,{\mathrm e}^{4}+{\mathrm e}^{x}}\) | \(21\) |
risch | \(\frac {x^{2} {\mathrm e}^{4}}{4 x \,{\mathrm e}^{4}+24 \,{\mathrm e}^{4}+{\mathrm e}^{x}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 20, normalized size = 1.25 \begin {gather*} \frac {x^{2} e^{4}}{4 \, x e^{4} + 24 \, e^{4} + e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.53, size = 20, normalized size = 1.25 \begin {gather*} \frac {x^2\,{\mathrm {e}}^4}{24\,{\mathrm {e}}^4+{\mathrm {e}}^x+4\,x\,{\mathrm {e}}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 20, normalized size = 1.25 \begin {gather*} \frac {x^{2} e^{4}}{4 x e^{4} + e^{x} + 24 e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________