Optimal. Leaf size=17 \[ 5+x+e^{-4+e^{e^e}-x} x \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 33, normalized size of antiderivative = 1.94, number of steps used = 4, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {6688, 2176, 2194} \begin {gather*} -e^{-x+e^{e^e}-4} (1-x)+e^{-x+e^{e^e}-4}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-e^{-4+e^{e^e}-x} (-1+x)\right ) \, dx\\ &=x-\int e^{-4+e^{e^e}-x} (-1+x) \, dx\\ &=-e^{-4+e^{e^e}-x} (1-x)+x-\int e^{-4+e^{e^e}-x} \, dx\\ &=e^{-4+e^{e^e}-x}-e^{-4+e^{e^e}-x} (1-x)+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 16, normalized size = 0.94 \begin {gather*} x+e^{-4+e^{e^e}-x} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 14, normalized size = 0.82 \begin {gather*} x + e^{\left (-x + e^{\left (e^{e}\right )} + \log \relax (x) - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.48, size = 14, normalized size = 0.82 \begin {gather*} x e^{\left (-x + e^{\left (e^{e}\right )} - 4\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 15, normalized size = 0.88
method | result | size |
risch | \(x +x \,{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{{\mathrm e}}}-4-x}\) | \(15\) |
norman | \(\left (1+x \,{\mathrm e}^{-{\mathrm e}^{{\mathrm e}^{{\mathrm e}}}-\ln \relax (x )+4+x}\right ) x \,{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{{\mathrm e}}}-4-x}\) | \(36\) |
default | \(x +{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{{\mathrm e}}}-4-x} {\mathrm e}^{{\mathrm e}^{{\mathrm e}}}-\left ({\mathrm e}^{{\mathrm e}^{{\mathrm e}}}-4-x \right ) {\mathrm e}^{{\mathrm e}^{{\mathrm e}^{{\mathrm e}}}-4-x}-4 \,{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{{\mathrm e}}}-4-x}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 34, normalized size = 2.00 \begin {gather*} {\left (x e^{\left (e^{\left (e^{e}\right )}\right )} + e^{\left (e^{\left (e^{e}\right )}\right )}\right )} e^{\left (-x - 4\right )} + x - e^{\left (-x + e^{\left (e^{e}\right )} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.38, size = 16, normalized size = 0.94 \begin {gather*} x\,\left ({\mathrm {e}}^{-x}\,{\mathrm {e}}^{-4}\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^{\mathrm {e}}}}+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 14, normalized size = 0.82 \begin {gather*} x e^{- x - 4 + e^{e^{e}}} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________