Optimal. Leaf size=24 \[ 10 e^{\frac {16 \left (2-e^{20+x}+4 \log (5)\right )^2}{x^2}} \]
________________________________________________________________________________________
Rubi [A] time = 3.97, antiderivative size = 47, normalized size of antiderivative = 1.96, number of steps used = 1, number of rules used = 1, integrand size = 87, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.011, Rules used = {6706} \begin {gather*} 2\ 5^{\frac {256}{x^2}+1} \exp \left (\frac {16 \left (e^{2 x+40}-4 e^{x+20} (1+\log (25))+4 \left (1+4 \log ^2(5)\right )\right )}{x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2\ 5^{1+\frac {256}{x^2}} \exp \left (\frac {16 \left (e^{40+2 x}+4 \left (1+4 \log ^2(5)\right )-4 e^{20+x} (1+\log (25))\right )}{x^2}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 7.51, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {64+16 e^{40+2 x}+e^{20+x} (-64-128 \log (5))+256 \log (5)+256 \log ^2(5)}{x^2}} \left (-1280+e^{40+2 x} (-320+320 x)-5120 \log (5)-5120 \log ^2(5)+e^{20+x} (1280-640 x+(2560-1280 x) \log (5))\right )}{x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 40, normalized size = 1.67 \begin {gather*} 10 \, e^{\left (-\frac {16 \, {\left (4 \, {\left (2 \, \log \relax (5) + 1\right )} e^{\left (x + 20\right )} - 16 \, \log \relax (5)^{2} - e^{\left (2 \, x + 40\right )} - 16 \, \log \relax (5) - 4\right )}}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.40, size = 56, normalized size = 2.33 \begin {gather*} 10 \, e^{\left (-\frac {128 \, e^{\left (x + 20\right )} \log \relax (5)}{x^{2}} + \frac {256 \, \log \relax (5)^{2}}{x^{2}} + \frac {16 \, e^{\left (2 \, x + 40\right )}}{x^{2}} - \frac {64 \, e^{\left (x + 20\right )}}{x^{2}} + \frac {256 \, \log \relax (5)}{x^{2}} + \frac {64}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 39, normalized size = 1.62
method | result | size |
norman | \(10 \,{\mathrm e}^{\frac {16 \,{\mathrm e}^{40+2 x}+\left (-128 \ln \relax (5)-64\right ) {\mathrm e}^{20+x}+256 \ln \relax (5)^{2}+256 \ln \relax (5)+64}{x^{2}}}\) | \(39\) |
risch | \(10 \,{\mathrm e}^{\frac {-128 \,{\mathrm e}^{20+x} \ln \relax (5)+256 \ln \relax (5)^{2}+16 \,{\mathrm e}^{40+2 x}-64 \,{\mathrm e}^{20+x}+256 \ln \relax (5)+64}{x^{2}}}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.75, size = 56, normalized size = 2.33 \begin {gather*} 10 \, e^{\left (-\frac {128 \, e^{\left (x + 20\right )} \log \relax (5)}{x^{2}} + \frac {256 \, \log \relax (5)^{2}}{x^{2}} + \frac {16 \, e^{\left (2 \, x + 40\right )}}{x^{2}} - \frac {64 \, e^{\left (x + 20\right )}}{x^{2}} + \frac {256 \, \log \relax (5)}{x^{2}} + \frac {64}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.70, size = 56, normalized size = 2.33 \begin {gather*} 2\,5^{1-\frac {128\,\left ({\mathrm {e}}^{20}\,{\mathrm {e}}^x-2\right )}{x^2}}\,{\mathrm {e}}^{\frac {16\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{40}}{x^2}}\,{\mathrm {e}}^{\frac {256\,{\ln \relax (5)}^2}{x^2}}\,{\mathrm {e}}^{\frac {64}{x^2}}\,{\mathrm {e}}^{-\frac {64\,{\mathrm {e}}^{20}\,{\mathrm {e}}^x}{x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.40, size = 41, normalized size = 1.71 \begin {gather*} 10 e^{\frac {\left (- 128 \log {\relax (5 )} - 64\right ) e^{x + 20} + 16 e^{2 x + 40} + 64 + 256 \log {\relax (5 )} + 256 \log {\relax (5 )}^{2}}{x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________