Optimal. Leaf size=34 \[ -x+\frac {1}{3} e^{2-x} \log \left (\frac {3+4 e^{26}-x}{x}-x\right ) \]
________________________________________________________________________________________
Rubi [B] time = 1.12, antiderivative size = 115, normalized size of antiderivative = 3.38, number of steps used = 5, number of rules used = 4, integrand size = 111, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.036, Rules used = {6, 1594, 6728, 2288} \begin {gather*} \frac {e^{2-x} \left (-x^2 \log \left (\frac {-x^2-x+4 e^{26}+3}{x}\right )+\left (3+4 e^{26}\right ) x \log \left (\frac {-x^2-x+4 e^{26}+3}{x}\right )+x^3 \left (-\log \left (\frac {-x^2-x+4 e^{26}+3}{x}\right )\right )\right )}{3 x \left (-x^2-x+4 e^{26}+3\right )}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 1594
Rule 2288
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (-4 e^{28}+e^2 \left (-3-x^2\right )+e^x \left (-9 x-12 e^{26} x+3 x^2+3 x^3\right )+\left (-4 e^{28} x+e^2 \left (-3 x+x^2+x^3\right )\right ) \log \left (\frac {3+4 e^{26}-x-x^2}{x}\right )\right )}{\left (9+12 e^{26}\right ) x-3 x^2-3 x^3} \, dx\\ &=\int \frac {e^{-x} \left (-4 e^{28}+e^2 \left (-3-x^2\right )+e^x \left (-9 x-12 e^{26} x+3 x^2+3 x^3\right )+\left (-4 e^{28} x+e^2 \left (-3 x+x^2+x^3\right )\right ) \log \left (\frac {3+4 e^{26}-x-x^2}{x}\right )\right )}{x \left (9+12 e^{26}-3 x-3 x^2\right )} \, dx\\ &=\int \left (-1+\frac {e^{2-x} \left (-3 \left (1+\frac {4 e^{26}}{3}\right )-x^2-3 \left (1+\frac {4 e^{26}}{3}\right ) x \log \left (-\frac {-3-4 e^{26}+x+x^2}{x}\right )+x^2 \log \left (-\frac {-3-4 e^{26}+x+x^2}{x}\right )+x^3 \log \left (-\frac {-3-4 e^{26}+x+x^2}{x}\right )\right )}{3 x \left (3+4 e^{26}-x-x^2\right )}\right ) \, dx\\ &=-x+\frac {1}{3} \int \frac {e^{2-x} \left (-3 \left (1+\frac {4 e^{26}}{3}\right )-x^2-3 \left (1+\frac {4 e^{26}}{3}\right ) x \log \left (-\frac {-3-4 e^{26}+x+x^2}{x}\right )+x^2 \log \left (-\frac {-3-4 e^{26}+x+x^2}{x}\right )+x^3 \log \left (-\frac {-3-4 e^{26}+x+x^2}{x}\right )\right )}{x \left (3+4 e^{26}-x-x^2\right )} \, dx\\ &=-x+\frac {e^{2-x} \left (\left (3+4 e^{26}\right ) x \log \left (\frac {3+4 e^{26}-x-x^2}{x}\right )-x^2 \log \left (\frac {3+4 e^{26}-x-x^2}{x}\right )-x^3 \log \left (\frac {3+4 e^{26}-x-x^2}{x}\right )\right )}{3 x \left (3+4 e^{26}-x-x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 33, normalized size = 0.97 \begin {gather*} \frac {1}{3} \left (-3 x+e^{2-x} \log \left (-\frac {-3-4 e^{26}+x+x^2}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 32, normalized size = 0.94 \begin {gather*} -\frac {1}{3} \, {\left (3 \, x e^{x} - e^{2} \log \left (-\frac {x^{2} + x - 4 \, e^{26} - 3}{x}\right )\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 28, normalized size = 0.82 \begin {gather*} \frac {1}{3} \, e^{\left (-x + 2\right )} \log \left (-\frac {x^{2} + x - 4 \, e^{26} - 3}{x}\right ) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 32, normalized size = 0.94
method | result | size |
default | \(-x +\frac {{\mathrm e}^{2} \ln \left (\frac {4 \,{\mathrm e}^{26}-x^{2}-x +3}{x}\right ) {\mathrm e}^{-x}}{3}\) | \(32\) |
norman | \(\left (\frac {{\mathrm e}^{2} \ln \left (\frac {4 \,{\mathrm e}^{26}-x^{2}-x +3}{x}\right )}{3}-{\mathrm e}^{x} x \right ) {\mathrm e}^{-x}\) | \(35\) |
risch | \(\frac {\ln \left (-\frac {x^{2}}{4}+{\mathrm e}^{26}-\frac {x}{4}+\frac {3}{4}\right ) {\mathrm e}^{2-x}}{3}-\frac {\left (i \pi \,{\mathrm e}^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (-\frac {x^{2}}{4}+{\mathrm e}^{26}-\frac {x}{4}+\frac {3}{4}\right )\right ) \mathrm {csgn}\left (\frac {i \left (-\frac {x^{2}}{4}+{\mathrm e}^{26}-\frac {x}{4}+\frac {3}{4}\right )}{x}\right )-i \pi \,{\mathrm e}^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (-\frac {x^{2}}{4}+{\mathrm e}^{26}-\frac {x}{4}+\frac {3}{4}\right )}{x}\right )^{2}-i \pi \,{\mathrm e}^{2} \mathrm {csgn}\left (i \left (-\frac {x^{2}}{4}+{\mathrm e}^{26}-\frac {x}{4}+\frac {3}{4}\right )\right ) \mathrm {csgn}\left (\frac {i \left (-\frac {x^{2}}{4}+{\mathrm e}^{26}-\frac {x}{4}+\frac {3}{4}\right )}{x}\right )^{2}+i \pi \,{\mathrm e}^{2} \mathrm {csgn}\left (\frac {i \left (-\frac {x^{2}}{4}+{\mathrm e}^{26}-\frac {x}{4}+\frac {3}{4}\right )}{x}\right )^{3}-4 \,{\mathrm e}^{2} \ln \relax (2)+2 \,{\mathrm e}^{2} \ln \relax (x )+6 \,{\mathrm e}^{x} x \right ) {\mathrm e}^{-x}}{6}\) | \(199\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 36, normalized size = 1.06 \begin {gather*} -\frac {1}{3} \, {\left (3 \, x e^{x} - e^{2} \log \left (-x^{2} - x + 4 \, e^{26} + 3\right ) + e^{2} \log \relax (x)\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{-x}\,\left (4\,{\mathrm {e}}^{28}+{\mathrm {e}}^x\,\left (9\,x+12\,x\,{\mathrm {e}}^{26}-3\,x^2-3\,x^3\right )+\ln \left (-\frac {x^2+x-4\,{\mathrm {e}}^{26}-3}{x}\right )\,\left (4\,x\,{\mathrm {e}}^{28}-{\mathrm {e}}^2\,\left (x^3+x^2-3\,x\right )\right )+{\mathrm {e}}^2\,\left (x^2+3\right )\right )}{9\,x+12\,x\,{\mathrm {e}}^{26}-3\,x^2-3\,x^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 5.36, size = 24, normalized size = 0.71 \begin {gather*} - x + \frac {e^{2} e^{- x} \log {\left (\frac {- x^{2} - x + 3 + 4 e^{26}}{x} \right )}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________