Optimal. Leaf size=23 \[ 4+x+x^2+\frac {6+\frac {5+x}{(4+e)^2}}{4+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 26, normalized size of antiderivative = 1.13, number of steps used = 5, number of rules used = 4, integrand size = 88, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {1986, 27, 12, 1850} \begin {gather*} x^2+x+\frac {97+48 e+6 e^2}{(4+e)^2 (x+4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1850
Rule 1986
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {159+640 x+272 x^2+32 x^3+e^2 \left (10+40 x+17 x^2+2 x^3\right )+e \left (80+320 x+136 x^2+16 x^3\right )}{16 (4+e)^2+8 (4+e)^2 x+(4+e)^2 x^2} \, dx\\ &=\int \frac {159+640 x+272 x^2+32 x^3+e^2 \left (10+40 x+17 x^2+2 x^3\right )+e \left (80+320 x+136 x^2+16 x^3\right )}{(4+e)^2 (4+x)^2} \, dx\\ &=\frac {\int \frac {159+640 x+272 x^2+32 x^3+e^2 \left (10+40 x+17 x^2+2 x^3\right )+e \left (80+320 x+136 x^2+16 x^3\right )}{(4+x)^2} \, dx}{(4+e)^2}\\ &=\frac {\int \left ((4+e)^2+2 (4+e)^2 x+\frac {-97-48 e-6 e^2}{(4+x)^2}\right ) \, dx}{(4+e)^2}\\ &=x+x^2+\frac {97+48 e+6 e^2}{(4+e)^2 (4+x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 44, normalized size = 1.91 \begin {gather*} \frac {\frac {97+48 e+6 e^2}{4+x}-7 (4+e)^2 (4+x)+(4+e)^2 (4+x)^2}{(4+e)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.70, size = 69, normalized size = 3.00 \begin {gather*} \frac {16 \, x^{3} + 80 \, x^{2} + {\left (x^{3} + 5 \, x^{2} + 4 \, x + 6\right )} e^{2} + 8 \, {\left (x^{3} + 5 \, x^{2} + 4 \, x + 6\right )} e + 64 \, x + 97}{{\left (x + 4\right )} e^{2} + 8 \, {\left (x + 4\right )} e + 16 \, x + 64} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 101, normalized size = 4.39 \begin {gather*} \frac {x^{2} e^{4} + 16 \, x^{2} e^{3} + 96 \, x^{2} e^{2} + 256 \, x^{2} e + 256 \, x^{2} + x e^{4} + 16 \, x e^{3} + 96 \, x e^{2} + 256 \, x e + 256 \, x}{e^{4} + 16 \, e^{3} + 96 \, e^{2} + 256 \, e + 256} + \frac {6 \, e^{2} + 48 \, e + 97}{{\left (x + 4\right )} {\left (e^{2} + 8 \, e + 16\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.42, size = 52, normalized size = 2.26
method | result | size |
norman | \(\frac {\left ({\mathrm e}+4\right ) x^{3}+\left (5 \,{\mathrm e}+20\right ) x^{2}-\frac {10 \,{\mathrm e}^{2}+80 \,{\mathrm e}+159}{{\mathrm e}+4}}{\left (4+x \right ) \left ({\mathrm e}+4\right )}\) | \(52\) |
default | \(\frac {x^{2} {\mathrm e}^{2}+8 x^{2} {\mathrm e}+{\mathrm e}^{2} x +8 x \,{\mathrm e}+16 x^{2}+16 x -\frac {-6 \,{\mathrm e}^{2}-48 \,{\mathrm e}-97}{4+x}}{{\mathrm e}^{2}+8 \,{\mathrm e}+16}\) | \(62\) |
gosper | \(\frac {x^{3} {\mathrm e}^{2}+5 x^{2} {\mathrm e}^{2}+8 x^{3} {\mathrm e}+40 x^{2} {\mathrm e}+16 x^{3}-10 \,{\mathrm e}^{2}+80 x^{2}-80 \,{\mathrm e}-159}{{\mathrm e}^{2} x +4 \,{\mathrm e}^{2}+8 x \,{\mathrm e}+32 \,{\mathrm e}+16 x +64}\) | \(83\) |
risch | \(x^{2}+x +\frac {6 \,{\mathrm e}^{2}}{{\mathrm e}^{2} x +4 \,{\mathrm e}^{2}+8 x \,{\mathrm e}+32 \,{\mathrm e}+16 x +64}+\frac {48 \,{\mathrm e}}{{\mathrm e}^{2} x +4 \,{\mathrm e}^{2}+8 x \,{\mathrm e}+32 \,{\mathrm e}+16 x +64}+\frac {97}{{\mathrm e}^{2} x +4 \,{\mathrm e}^{2}+8 x \,{\mathrm e}+32 \,{\mathrm e}+16 x +64}\) | \(88\) |
meijerg | \(\frac {159 x}{16 \left ({\mathrm e}^{2}+8 \,{\mathrm e}+16\right ) \left (1+\frac {x}{4}\right )}+\frac {16 \left (2 \,{\mathrm e}^{2}+16 \,{\mathrm e}+32\right ) \left (-\frac {x \left (-\frac {1}{8} x^{2}+\frac {3}{2} x +12\right )}{16 \left (1+\frac {x}{4}\right )}+3 \ln \left (1+\frac {x}{4}\right )\right )}{{\mathrm e}^{2}+8 \,{\mathrm e}+16}+\frac {4 \left (17 \,{\mathrm e}^{2}+136 \,{\mathrm e}+272\right ) \left (\frac {x \left (\frac {3 x}{4}+6\right )}{3 x +12}-2 \ln \left (1+\frac {x}{4}\right )\right )}{{\mathrm e}^{2}+8 \,{\mathrm e}+16}+\frac {\left (40 \,{\mathrm e}^{2}+320 \,{\mathrm e}+640\right ) \left (-\frac {x}{4 \left (1+\frac {x}{4}\right )}+\ln \left (1+\frac {x}{4}\right )\right )}{{\mathrm e}^{2}+8 \,{\mathrm e}+16}+\frac {5 \,{\mathrm e}^{2} x}{8 \left ({\mathrm e}^{2}+8 \,{\mathrm e}+16\right ) \left (1+\frac {x}{4}\right )}+\frac {5 \,{\mathrm e} x}{\left ({\mathrm e}^{2}+8 \,{\mathrm e}+16\right ) \left (1+\frac {x}{4}\right )}\) | \(201\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 38, normalized size = 1.65 \begin {gather*} x^{2} + x + \frac {6 \, e^{2} + 48 \, e + 97}{x {\left (e^{2} + 8 \, e + 16\right )} + 4 \, e^{2} + 32 \, e + 64} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.46, size = 38, normalized size = 1.65 \begin {gather*} x+x^2+\frac {48\,\mathrm {e}+6\,{\mathrm {e}}^2+97}{32\,\mathrm {e}+4\,{\mathrm {e}}^2+x\,\left (8\,\mathrm {e}+{\mathrm {e}}^2+16\right )+64} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 39, normalized size = 1.70 \begin {gather*} x^{2} + x + \frac {6 e^{2} + 97 + 48 e}{x \left (e^{2} + 16 + 8 e\right ) + 4 e^{2} + 64 + 32 e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________