Optimal. Leaf size=30 \[ -2+x-\frac {-25+x}{x^2 \log \left (\frac {e^{16}}{4}\right )}-\frac {\log ^2(x)}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 53, normalized size of antiderivative = 1.77, number of steps used = 8, number of rules used = 4, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.098, Rules used = {12, 14, 2304, 2305} \begin {gather*} \frac {25}{x^2 (16-\log (4))}-\frac {\log ^2(x)}{x}-\frac {1}{x (16-\log (4))}+\frac {2 x (8-\log (2))}{16-\log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2304
Rule 2305
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-50+x+\log \left (\frac {e^{16}}{4}\right ) \left (x^3-2 x \log (x)+x \log ^2(x)\right )}{x^3} \, dx}{16-\log (4)}\\ &=\frac {\int \left (\frac {-50+x+x^3 (16-\log (4))}{x^3}+\frac {2 (-16+\log (4)) \log (x)}{x^2}-\frac {(-16+\log (4)) \log ^2(x)}{x^2}\right ) \, dx}{16-\log (4)}\\ &=-\left (2 \int \frac {\log (x)}{x^2} \, dx\right )+\frac {\int \frac {-50+x+x^3 (16-\log (4))}{x^3} \, dx}{16-\log (4)}+\int \frac {\log ^2(x)}{x^2} \, dx\\ &=\frac {2}{x}+\frac {2 \log (x)}{x}-\frac {\log ^2(x)}{x}+2 \int \frac {\log (x)}{x^2} \, dx+\frac {\int \left (-\frac {50}{x^3}+\frac {1}{x^2}+16 \left (1-\frac {\log (2)}{8}\right )\right ) \, dx}{16-\log (4)}\\ &=\frac {25}{x^2 (16-\log (4))}-\frac {1}{x (16-\log (4))}+\frac {2 x (8-\log (2))}{16-\log (4)}-\frac {\log ^2(x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 48, normalized size = 1.60 \begin {gather*} \frac {\frac {25}{x^2}-\frac {1}{x}+16 x-2 x \log (2)-\frac {16 \log ^2(x)}{x}+\frac {2 \log (2) \log ^2(x)}{x}}{16-\log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 45, normalized size = 1.50 \begin {gather*} \frac {2 \, x^{3} \log \relax (2) - 16 \, x^{3} - 2 \, {\left (x \log \relax (2) - 8 \, x\right )} \log \relax (x)^{2} + x - 25}{2 \, {\left (x^{2} \log \relax (2) - 8 \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 37, normalized size = 1.23 \begin {gather*} -\frac {2 \, x {\left (\log \relax (2) - 8\right )} - \frac {2 \, {\left (\log \relax (2) - 8\right )} \log \relax (x)^{2}}{x} + \frac {x - 25}{x^{2}}}{\log \left (\frac {1}{4} \, e^{16}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 33, normalized size = 1.10
method | result | size |
norman | \(\frac {x^{3}-\frac {25}{2 \left (\ln \relax (2)-8\right )}-x \ln \relax (x )^{2}+\frac {x}{2 \ln \relax (2)-16}}{x^{2}}\) | \(33\) |
risch | \(\frac {2 \left (\ln \relax (2)-8\right ) \ln \relax (x )^{2}}{\left (-2 \ln \relax (2)+16\right ) x}-\frac {2 x^{3} \ln \relax (2)-16 x^{3}+x -25}{\left (-2 \ln \relax (2)+16\right ) x^{2}}\) | \(51\) |
default | \(\frac {-2 \ln \relax (2) \left (-\frac {\ln \relax (x )^{2}}{x}-\frac {2 \ln \relax (x )}{x}-\frac {2}{x}\right )-\frac {16 \ln \relax (x )^{2}}{x}-\frac {1}{x}-2 x \ln \relax (2)+16 x +4 \ln \relax (2) \left (-\frac {\ln \relax (x )}{x}-\frac {1}{x}\right )+\frac {25}{x^{2}}}{\ln \left (\frac {{\mathrm e}^{16}}{4}\right )}\) | \(80\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.41, size = 63, normalized size = 2.10 \begin {gather*} \frac {x \log \left (\frac {1}{4} \, e^{16}\right ) + 2 \, {\left (\frac {\log \relax (x)}{x} + \frac {1}{x}\right )} \log \left (\frac {1}{4} \, e^{16}\right ) - \frac {{\left (\log \relax (x)^{2} + 2 \, \log \relax (x) + 2\right )} \log \left (\frac {1}{4} \, e^{16}\right )}{x} - \frac {1}{x} + \frac {25}{x^{2}}}{\log \left (\frac {1}{4} \, e^{16}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.50, size = 41, normalized size = 1.37 \begin {gather*} \frac {\left (16-\ln \relax (4)\right )\,x^4+\left (\ln \relax (4)-16\right )\,x^2\,{\ln \relax (x)}^2-x^2+25\,x}{x^3\,\ln \left (\frac {{\mathrm {e}}^{16}}{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 29, normalized size = 0.97 \begin {gather*} \frac {- x \left (16 - 2 \log {\relax (2 )}\right ) - \frac {25 - x}{x^{2}}}{-16 + 2 \log {\relax (2 )}} - \frac {\log {\relax (x )}^{2}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________