Optimal. Leaf size=29 \[ \frac {\frac {4}{x^2}+\frac {e^4}{x (1+2 x)}}{x \log (\log (5))} \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 53, normalized size of antiderivative = 1.83, number of steps used = 5, number of rules used = 4, integrand size = 45, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.089, Rules used = {12, 1594, 27, 1820} \begin {gather*} \frac {4}{x^3 \log (\log (5))}+\frac {e^4}{x^2 \log (\log (5))}+\frac {4 e^4}{(2 x+1) \log (\log (5))}-\frac {2 e^4}{x \log (\log (5))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1594
Rule 1820
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-12-48 x-48 x^2+e^4 \left (-2 x-6 x^2\right )}{x^4+4 x^5+4 x^6} \, dx}{\log (\log (5))}\\ &=\frac {\int \frac {-12-48 x-48 x^2+e^4 \left (-2 x-6 x^2\right )}{x^4 \left (1+4 x+4 x^2\right )} \, dx}{\log (\log (5))}\\ &=\frac {\int \frac {-12-48 x-48 x^2+e^4 \left (-2 x-6 x^2\right )}{x^4 (1+2 x)^2} \, dx}{\log (\log (5))}\\ &=\frac {\int \left (-\frac {12}{x^4}-\frac {2 e^4}{x^3}+\frac {2 e^4}{x^2}-\frac {8 e^4}{(1+2 x)^2}\right ) \, dx}{\log (\log (5))}\\ &=\frac {4}{x^3 \log (\log (5))}+\frac {e^4}{x^2 \log (\log (5))}-\frac {2 e^4}{x \log (\log (5))}+\frac {4 e^4}{(1+2 x) \log (\log (5))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 25, normalized size = 0.86 \begin {gather*} \frac {4+\left (8+e^4\right ) x}{x^3 (1+2 x) \log (\log (5))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 26, normalized size = 0.90 \begin {gather*} \frac {x e^{4} + 8 \, x + 4}{{\left (2 \, x^{4} + x^{3}\right )} \log \left (\log \relax (5)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 37, normalized size = 1.28 \begin {gather*} \frac {\frac {4 \, e^{4}}{2 \, x + 1} - \frac {2 \, x^{2} e^{4} - x e^{4} - 4}{x^{3}}}{\log \left (\log \relax (5)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 26, normalized size = 0.90
method | result | size |
gosper | \(\frac {x \,{\mathrm e}^{4}+8 x +4}{x^{3} \ln \left (\ln \relax (5)\right ) \left (2 x +1\right )}\) | \(26\) |
risch | \(\frac {4+2 \left (\frac {{\mathrm e}^{4}}{2}+4\right ) x}{x^{3} \ln \left (\ln \relax (5)\right ) \left (2 x +1\right )}\) | \(28\) |
norman | \(\frac {\frac {\left ({\mathrm e}^{4}+8\right ) x}{\ln \left (\ln \relax (5)\right )}+\frac {4}{\ln \left (\ln \relax (5)\right )}}{x^{3} \left (2 x +1\right )}\) | \(31\) |
default | \(\frac {-\frac {2 \,{\mathrm e}^{4}}{x}+\frac {4}{x^{3}}+\frac {{\mathrm e}^{4}}{x^{2}}+\frac {4 \,{\mathrm e}^{4}}{2 x +1}}{\ln \left (\ln \relax (5)\right )}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 25, normalized size = 0.86 \begin {gather*} \frac {x {\left (e^{4} + 8\right )} + 4}{{\left (2 \, x^{4} + x^{3}\right )} \log \left (\log \relax (5)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 27, normalized size = 0.93 \begin {gather*} \frac {x\,\left ({\mathrm {e}}^4+8\right )+4}{2\,\ln \left (\ln \relax (5)\right )\,x^4+\ln \left (\ln \relax (5)\right )\,x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 29, normalized size = 1.00 \begin {gather*} - \frac {x \left (- e^{4} - 8\right ) - 4}{2 x^{4} \log {\left (\log {\relax (5 )} \right )} + x^{3} \log {\left (\log {\relax (5 )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________