Optimal. Leaf size=31 \[ e^{2 x} \left (1+\log \left (\frac {4}{5}+e^{e^{e^5}} (2-x) (-3+x)\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 50.57, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8 e^{2 x}+e^{e^{e^5}+2 x} \left (10-30 x+10 x^2\right )+\left (-16 e^{2 x}+e^{e^{e^5}+2 x} \left (70-80 x+20 x^2\right )\right ) \log \left (\frac {1}{5} \left (4+e^{e^{e^5}} \left (-30+25 x-5 x^2\right )\right )\right )+\left (-8 e^{2 x}+e^{e^{e^5}+2 x} \left (60-50 x+10 x^2\right )\right ) \log ^2\left (\frac {1}{5} \left (4+e^{e^{e^5}} \left (-30+25 x-5 x^2\right )\right )\right )}{-4+e^{e^{e^5}} \left (30-25 x+5 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 e^{2 x}-e^{e^{e^5}+2 x} \left (10-30 x+10 x^2\right )-\left (-16 e^{2 x}+e^{e^{e^5}+2 x} \left (70-80 x+20 x^2\right )\right ) \log \left (\frac {1}{5} \left (4+e^{e^{e^5}} \left (-30+25 x-5 x^2\right )\right )\right )-\left (-8 e^{2 x}+e^{e^{e^5}+2 x} \left (60-50 x+10 x^2\right )\right ) \log ^2\left (\frac {1}{5} \left (4+e^{e^{e^5}} \left (-30+25 x-5 x^2\right )\right )\right )}{2 \left (2-15 e^{e^{e^5}}\right )+25 e^{e^{e^5}} x-5 e^{e^{e^5}} x^2} \, dx\\ &=\int \frac {2 e^{2 x} \left (1+\log \left (\frac {4}{5}-e^{e^{e^5}} \left (6-5 x+x^2\right )\right )\right ) \left (4-5 e^{e^{e^5}} \left (1-3 x+x^2\right )-\left (-4+5 e^{e^{e^5}} \left (6-5 x+x^2\right )\right ) \log \left (\frac {4}{5}-e^{e^{e^5}} \left (6-5 x+x^2\right )\right )\right )}{2 \left (2-15 e^{e^{e^5}}\right )+25 e^{e^{e^5}} x-5 e^{e^{e^5}} x^2} \, dx\\ &=2 \int \frac {e^{2 x} \left (1+\log \left (\frac {4}{5}-e^{e^{e^5}} \left (6-5 x+x^2\right )\right )\right ) \left (4-5 e^{e^{e^5}} \left (1-3 x+x^2\right )-\left (-4+5 e^{e^{e^5}} \left (6-5 x+x^2\right )\right ) \log \left (\frac {4}{5}-e^{e^{e^5}} \left (6-5 x+x^2\right )\right )\right )}{2 \left (2-15 e^{e^{e^5}}\right )+25 e^{e^{e^5}} x-5 e^{e^{e^5}} x^2} \, dx\\ &=2 \int \left (\frac {e^{2 x} \left (4-5 e^{e^{e^5}}+15 e^{e^{e^5}} x-5 e^{e^{e^5}} x^2\right )}{2 \left (2-15 e^{e^{e^5}}\right )+25 e^{e^{e^5}} x-5 e^{e^{e^5}} x^2}+\frac {e^{2 x} \left (8-35 e^{e^{e^5}}+40 e^{e^{e^5}} x-10 e^{e^{e^5}} x^2\right ) \log \left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right )}{2 \left (2-15 e^{e^{e^5}}\right )+25 e^{e^{e^5}} x-5 e^{e^{e^5}} x^2}+e^{2 x} \log ^2\left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right )\right ) \, dx\\ &=2 \int \frac {e^{2 x} \left (4-5 e^{e^{e^5}}+15 e^{e^{e^5}} x-5 e^{e^{e^5}} x^2\right )}{2 \left (2-15 e^{e^{e^5}}\right )+25 e^{e^{e^5}} x-5 e^{e^{e^5}} x^2} \, dx+2 \int \frac {e^{2 x} \left (8-35 e^{e^{e^5}}+40 e^{e^{e^5}} x-10 e^{e^{e^5}} x^2\right ) \log \left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right )}{2 \left (2-15 e^{e^{e^5}}\right )+25 e^{e^{e^5}} x-5 e^{e^{e^5}} x^2} \, dx+2 \int e^{2 x} \log ^2\left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right ) \, dx\\ &=2 e^{2 x} \log \left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right )+2 e^{5-e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}} \text {Ei}\left (-\frac {1}{5} e^{-e^{e^5}} \left (25 e^{e^{e^5}}-e^{\frac {e^{e^5}}{2}} \sqrt {80+25 e^{e^{e^5}}}-10 e^{e^{e^5}} x\right )\right ) \log \left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right )+2 e^{5+e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}} \text {Ei}\left (-\frac {1}{5} e^{-e^{e^5}} \left (25 e^{e^{e^5}}+e^{\frac {e^{e^5}}{2}} \sqrt {80+25 e^{e^{e^5}}}-10 e^{e^{e^5}} x\right )\right ) \log \left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right )+2 \int \left (e^{2 x}+\frac {5 e^{e^{e^5}+2 x} (5-2 x)}{2 \left (2-15 e^{e^{e^5}}\right )+25 e^{e^{e^5}} x-5 e^{e^{e^5}} x^2}\right ) \, dx-2 \int \frac {5 e^{e^{e^5}-e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}} (5-2 x) \left (e^{e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}+2 x}+e^{5+2 e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}} \text {Ei}\left (-5-e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}+2 x\right )+e^5 \text {Ei}\left (-5+e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}+2 x\right )\right )}{2 \left (2-15 e^{e^{e^5}}\right )+25 e^{e^{e^5}} x-5 e^{e^{e^5}} x^2} \, dx+2 \int e^{2 x} \log ^2\left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right ) \, dx\\ &=2 e^{2 x} \log \left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right )+2 e^{5-e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}} \text {Ei}\left (-\frac {1}{5} e^{-e^{e^5}} \left (25 e^{e^{e^5}}-e^{\frac {e^{e^5}}{2}} \sqrt {80+25 e^{e^{e^5}}}-10 e^{e^{e^5}} x\right )\right ) \log \left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right )+2 e^{5+e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}} \text {Ei}\left (-\frac {1}{5} e^{-e^{e^5}} \left (25 e^{e^{e^5}}+e^{\frac {e^{e^5}}{2}} \sqrt {80+25 e^{e^{e^5}}}-10 e^{e^{e^5}} x\right )\right ) \log \left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right )+2 \int e^{2 x} \, dx+2 \int e^{2 x} \log ^2\left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right ) \, dx+10 \int \frac {e^{e^{e^5}+2 x} (5-2 x)}{2 \left (2-15 e^{e^{e^5}}\right )+25 e^{e^{e^5}} x-5 e^{e^{e^5}} x^2} \, dx-\left (10 e^{e^{e^5}-e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}}\right ) \int \frac {(5-2 x) \left (e^{e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}+2 x}+e^{5+2 e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}} \text {Ei}\left (-5-e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}+2 x\right )+e^5 \text {Ei}\left (-5+e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}+2 x\right )\right )}{2 \left (2-15 e^{e^{e^5}}\right )+25 e^{e^{e^5}} x-5 e^{e^{e^5}} x^2} \, dx\\ &=e^{2 x}+2 e^{2 x} \log \left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right )+2 e^{5-e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}} \text {Ei}\left (-\frac {1}{5} e^{-e^{e^5}} \left (25 e^{e^{e^5}}-e^{\frac {e^{e^5}}{2}} \sqrt {80+25 e^{e^{e^5}}}-10 e^{e^{e^5}} x\right )\right ) \log \left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right )+2 e^{5+e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}} \text {Ei}\left (-\frac {1}{5} e^{-e^{e^5}} \left (25 e^{e^{e^5}}+e^{\frac {e^{e^5}}{2}} \sqrt {80+25 e^{e^{e^5}}}-10 e^{e^{e^5}} x\right )\right ) \log \left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right )+2 \int e^{2 x} \log ^2\left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right ) \, dx+10 \int \left (-\frac {2 e^{e^{e^5}+2 x}}{25 e^{e^{e^5}}-e^{\frac {e^{e^5}}{2}} \sqrt {5 \left (16+5 e^{e^{e^5}}\right )}-10 e^{e^{e^5}} x}-\frac {2 e^{e^{e^5}+2 x}}{25 e^{e^{e^5}}+e^{\frac {e^{e^5}}{2}} \sqrt {5 \left (16+5 e^{e^{e^5}}\right )}-10 e^{e^{e^5}} x}\right ) \, dx-\left (10 e^{e^{e^5}-e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}}\right ) \int \left (\frac {e^{e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {1}{5} \left (16+5 e^{e^{e^5}}\right )}+2 x} (5-2 x)}{2 \left (2-15 e^{e^{e^5}}\right )+25 e^{e^{e^5}} x-5 e^{e^{e^5}} x^2}+\frac {e^5 (5-2 x) \left (e^{2 e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {1}{5} \left (16+5 e^{e^{e^5}}\right )}} \text {Ei}\left (-5-e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}+2 x\right )+\text {Ei}\left (-5+e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}+2 x\right )\right )}{2 \left (2-15 e^{e^{e^5}}\right )+25 e^{e^{e^5}} x-5 e^{e^{e^5}} x^2}\right ) \, dx\\ &=e^{2 x}+2 e^{2 x} \log \left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right )+2 e^{5-e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}} \text {Ei}\left (-\frac {1}{5} e^{-e^{e^5}} \left (25 e^{e^{e^5}}-e^{\frac {e^{e^5}}{2}} \sqrt {80+25 e^{e^{e^5}}}-10 e^{e^{e^5}} x\right )\right ) \log \left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right )+2 e^{5+e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}} \text {Ei}\left (-\frac {1}{5} e^{-e^{e^5}} \left (25 e^{e^{e^5}}+e^{\frac {e^{e^5}}{2}} \sqrt {80+25 e^{e^{e^5}}}-10 e^{e^{e^5}} x\right )\right ) \log \left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right )+2 \int e^{2 x} \log ^2\left (\frac {2}{5} \left (2-15 e^{e^{e^5}}\right )+5 e^{e^{e^5}} x-e^{e^{e^5}} x^2\right ) \, dx-20 \int \frac {e^{e^{e^5}+2 x}}{25 e^{e^{e^5}}-e^{\frac {e^{e^5}}{2}} \sqrt {5 \left (16+5 e^{e^{e^5}}\right )}-10 e^{e^{e^5}} x} \, dx-20 \int \frac {e^{e^{e^5}+2 x}}{25 e^{e^{e^5}}+e^{\frac {e^{e^5}}{2}} \sqrt {5 \left (16+5 e^{e^{e^5}}\right )}-10 e^{e^{e^5}} x} \, dx-\left (10 e^{e^{e^5}-e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}}\right ) \int \frac {e^{e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {1}{5} \left (16+5 e^{e^{e^5}}\right )}+2 x} (5-2 x)}{2 \left (2-15 e^{e^{e^5}}\right )+25 e^{e^{e^5}} x-5 e^{e^{e^5}} x^2} \, dx-\left (10 e^{5+e^{e^5}-e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}}\right ) \int \frac {(5-2 x) \left (e^{2 e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {1}{5} \left (16+5 e^{e^{e^5}}\right )}} \text {Ei}\left (-5-e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}+2 x\right )+\text {Ei}\left (-5+e^{-\frac {e^{e^5}}{2}} \sqrt {\frac {16}{5}+e^{e^{e^5}}}+2 x\right )\right )}{2 \left (2-15 e^{e^{e^5}}\right )+25 e^{e^{e^5}} x-5 e^{e^{e^5}} x^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 32, normalized size = 1.03 \begin {gather*} e^{2 x} \left (1+\log \left (\frac {4}{5}-e^{e^{e^5}} \left (6-5 x+x^2\right )\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 52, normalized size = 1.68 \begin {gather*} e^{\left (2 \, x\right )} \log \left (-{\left (x^{2} - 5 \, x + 6\right )} e^{\left (e^{\left (e^{5}\right )}\right )} + \frac {4}{5}\right )^{2} + 2 \, e^{\left (2 \, x\right )} \log \left (-{\left (x^{2} - 5 \, x + 6\right )} e^{\left (e^{\left (e^{5}\right )}\right )} + \frac {4}{5}\right ) + e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.40, size = 118, normalized size = 3.81 \begin {gather*} e^{\left (2 \, x\right )} \log \relax (5)^{2} - 2 \, e^{\left (2 \, x\right )} \log \relax (5) \log \left (-5 \, x^{2} e^{\left (e^{\left (e^{5}\right )}\right )} + 25 \, x e^{\left (e^{\left (e^{5}\right )}\right )} - 30 \, e^{\left (e^{\left (e^{5}\right )}\right )} + 4\right ) + e^{\left (2 \, x\right )} \log \left (-5 \, x^{2} e^{\left (e^{\left (e^{5}\right )}\right )} + 25 \, x e^{\left (e^{\left (e^{5}\right )}\right )} - 30 \, e^{\left (e^{\left (e^{5}\right )}\right )} + 4\right )^{2} - 2 \, e^{\left (2 \, x\right )} \log \relax (5) + 2 \, e^{\left (2 \, x\right )} \log \left (-5 \, x^{2} e^{\left (e^{\left (e^{5}\right )}\right )} + 25 \, x e^{\left (e^{\left (e^{5}\right )}\right )} - 30 \, e^{\left (e^{\left (e^{5}\right )}\right )} + 4\right ) + e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 4.30, size = 57, normalized size = 1.84
method | result | size |
risch | \({\mathrm e}^{2 x} \ln \left (\frac {\left (-5 x^{2}+25 x -30\right ) {\mathrm e}^{{\mathrm e}^{{\mathrm e}^{5}}}}{5}+\frac {4}{5}\right )^{2}+2 \,{\mathrm e}^{2 x} \ln \left (\frac {\left (-5 x^{2}+25 x -30\right ) {\mathrm e}^{{\mathrm e}^{{\mathrm e}^{5}}}}{5}+\frac {4}{5}\right )+{\mathrm e}^{2 x}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 83, normalized size = 2.68 \begin {gather*} -2 \, {\left (\log \relax (5) - 1\right )} e^{\left (2 \, x\right )} \log \left (-5 \, x^{2} e^{\left (e^{\left (e^{5}\right )}\right )} + 25 \, x e^{\left (e^{\left (e^{5}\right )}\right )} - 30 \, e^{\left (e^{\left (e^{5}\right )}\right )} + 4\right ) + e^{\left (2 \, x\right )} \log \left (-5 \, x^{2} e^{\left (e^{\left (e^{5}\right )}\right )} + 25 \, x e^{\left (e^{\left (e^{5}\right )}\right )} - 30 \, e^{\left (e^{\left (e^{5}\right )}\right )} + 4\right )^{2} + {\left (\log \relax (5)^{2} - 2 \, \log \relax (5) + 1\right )} e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.01, size = 28, normalized size = 0.90 \begin {gather*} {\mathrm {e}}^{2\,x}\,{\left (\ln \left (\frac {4}{5}-\frac {{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^5}}\,\left (5\,x^2-25\,x+30\right )}{5}\right )+1\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________