Optimal. Leaf size=32 \[ \log \left (\frac {4}{x \left (2-\log \left (\frac {9}{5-e^{2 (2+2 x)}+\log (3)}\right )\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.88, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-10+e^{4+4 x} (2+8 x)-2 \log (3)+\left (5-e^{4+4 x}+\log (3)\right ) \log \left (-\frac {9}{-5+e^{4+4 x}-\log (3)}\right )}{10 x-2 e^{4+4 x} x+2 x \log (3)+\left (-5 x+e^{4+4 x} x-x \log (3)\right ) \log \left (-\frac {9}{-5+e^{4+4 x}-\log (3)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-10+e^{4+4 x} (2+8 x)-2 \log (3)+\left (5-e^{4+4 x}+\log (3)\right ) \log \left (-\frac {9}{-5+e^{4+4 x}-\log (3)}\right )}{-2 e^{4+4 x} x+x (10+2 \log (3))+\left (-5 x+e^{4+4 x} x-x \log (3)\right ) \log \left (-\frac {9}{-5+e^{4+4 x}-\log (3)}\right )} \, dx\\ &=\int \frac {-e^{4+4 x} (2+8 x)+10 \left (1+\frac {\log (3)}{5}\right )-\left (5-e^{4+4 x}+\log (3)\right ) \log \left (-\frac {9}{-5+e^{4+4 x}-\log (3)}\right )}{x \left (e^{4+4 x}-5 \left (1+\frac {\log (3)}{5}\right )\right ) \left (2-\log \left (\frac {9}{5-e^{4+4 x}+\log (3)}\right )\right )} \, dx\\ &=\int \left (\frac {8 (-5-\log (3))}{\left (e^{4+4 x}-5 \left (1+\frac {\log (3)}{5}\right )\right ) \left (2-\log \left (\frac {9}{5-e^{4+4 x}+\log (3)}\right )\right )}+\frac {2+8 x-\log \left (\frac {9}{5-e^{4+4 x}+\log (3)}\right )}{x \left (-2+\log \left (\frac {9}{5-e^{4+4 x}+\log (3)}\right )\right )}\right ) \, dx\\ &=-\left ((8 (5+\log (3))) \int \frac {1}{\left (e^{4+4 x}-5 \left (1+\frac {\log (3)}{5}\right )\right ) \left (2-\log \left (\frac {9}{5-e^{4+4 x}+\log (3)}\right )\right )} \, dx\right )+\int \frac {2+8 x-\log \left (\frac {9}{5-e^{4+4 x}+\log (3)}\right )}{x \left (-2+\log \left (\frac {9}{5-e^{4+4 x}+\log (3)}\right )\right )} \, dx\\ &=-\left ((2 (5+\log (3))) \operatorname {Subst}\left (\int \frac {1}{x (-5+x-\log (3)) \left (2-\log \left (\frac {9}{5-x+\log (3)}\right )\right )} \, dx,x,e^{4+4 x}\right )\right )+\int \left (-\frac {1}{x}+\frac {8}{-2+\log \left (\frac {9}{5-e^{4+4 x}+\log (3)}\right )}\right ) \, dx\\ &=-\log (x)+8 \int \frac {1}{-2+\log \left (\frac {9}{5-e^{4+4 x}+\log (3)}\right )} \, dx-(2 (5+\log (3))) \operatorname {Subst}\left (\int \left (-\frac {1}{x (5+\log (3)) \left (2-\log \left (\frac {9}{5-x+\log (3)}\right )\right )}+\frac {1}{(-5+x-\log (3)) (5+\log (3)) \left (2-\log \left (\frac {9}{5-x+\log (3)}\right )\right )}\right ) \, dx,x,e^{4+4 x}\right )\\ &=-\log (x)+2 \operatorname {Subst}\left (\int \frac {1}{x \left (2-\log \left (\frac {9}{5-x+\log (3)}\right )\right )} \, dx,x,e^{4+4 x}\right )-2 \operatorname {Subst}\left (\int \frac {1}{(-5+x-\log (3)) \left (2-\log \left (\frac {9}{5-x+\log (3)}\right )\right )} \, dx,x,e^{4+4 x}\right )+2 \operatorname {Subst}\left (\int \frac {1}{x \left (-2+\log \left (\frac {9}{5-x+\log (3)}\right )\right )} \, dx,x,e^{4+4 x}\right )\\ &=-\log (x)+2 \operatorname {Subst}\left (\int \frac {5+\log (3)}{x (-5-\log (3)) \left (2-\log \left (\frac {9}{x}\right )\right )} \, dx,x,5-e^{4+4 x}+\log (3)\right )+2 \operatorname {Subst}\left (\int \frac {1}{x \left (2-\log \left (\frac {9}{5-x+\log (3)}\right )\right )} \, dx,x,e^{4+4 x}\right )+2 \operatorname {Subst}\left (\int \frac {1}{x \left (-2+\log \left (\frac {9}{5-x+\log (3)}\right )\right )} \, dx,x,e^{4+4 x}\right )\\ &=-\log (x)-2 \operatorname {Subst}\left (\int \frac {1}{x \left (2-\log \left (\frac {9}{x}\right )\right )} \, dx,x,5-e^{4+4 x}+\log (3)\right )+2 \operatorname {Subst}\left (\int \frac {1}{x \left (2-\log \left (\frac {9}{5-x+\log (3)}\right )\right )} \, dx,x,e^{4+4 x}\right )+2 \operatorname {Subst}\left (\int \frac {1}{x \left (-2+\log \left (\frac {9}{5-x+\log (3)}\right )\right )} \, dx,x,e^{4+4 x}\right )\\ &=-\log (x)-2 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,2-\log \left (\frac {9}{5-e^{4+4 x}+\log (3)}\right )\right )+2 \operatorname {Subst}\left (\int \frac {1}{x \left (2-\log \left (\frac {9}{5-x+\log (3)}\right )\right )} \, dx,x,e^{4+4 x}\right )+2 \operatorname {Subst}\left (\int \frac {1}{x \left (-2+\log \left (\frac {9}{5-x+\log (3)}\right )\right )} \, dx,x,e^{4+4 x}\right )\\ &=-\log (x)-2 \log \left (2-\log \left (\frac {9}{5-e^{4+4 x}+\log (3)}\right )\right )+2 \operatorname {Subst}\left (\int \frac {1}{x \left (2-\log \left (\frac {9}{5-x+\log (3)}\right )\right )} \, dx,x,e^{4+4 x}\right )+2 \operatorname {Subst}\left (\int \frac {1}{x \left (-2+\log \left (\frac {9}{5-x+\log (3)}\right )\right )} \, dx,x,e^{4+4 x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.25, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-10+e^{4+4 x} (2+8 x)-2 \log (3)+\left (5-e^{4+4 x}+\log (3)\right ) \log \left (-\frac {9}{-5+e^{4+4 x}-\log (3)}\right )}{10 x-2 e^{4+4 x} x+2 x \log (3)+\left (-5 x+e^{4+4 x} x-x \log (3)\right ) \log \left (-\frac {9}{-5+e^{4+4 x}-\log (3)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 27, normalized size = 0.84 \begin {gather*} -\log \relax (x) - 2 \, \log \left (\log \left (-\frac {9}{e^{\left (4 \, x + 4\right )} - \log \relax (3) - 5}\right ) - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.54, size = 94, normalized size = 2.94 \begin {gather*} -\log \left (\frac {1}{2} \, \pi ^{2} \mathrm {sgn}\left (e^{\left (4 \, x + 4\right )} - \log \relax (3) - 5\right ) + \frac {1}{2} \, \pi ^{2} + 4 \, \log \relax (3)^{2} - 4 \, \log \relax (3) \log \left ({\left | e^{\left (4 \, x + 4\right )} - \log \relax (3) - 5 \right |}\right ) + \log \left ({\left | e^{\left (4 \, x + 4\right )} - \log \relax (3) - 5 \right |}\right )^{2} - 8 \, \log \relax (3) + 4 \, \log \left ({\left | e^{\left (4 \, x + 4\right )} - \log \relax (3) - 5 \right |}\right ) + 4\right ) - \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.34, size = 28, normalized size = 0.88
method | result | size |
norman | \(-\ln \relax (x )-2 \ln \left (\ln \left (-\frac {9}{{\mathrm e}^{4 x +4}-\ln \relax (3)-5}\right )-2\right )\) | \(28\) |
default | \(-\ln \relax (x )-2 \ln \left (-\ln \left (-\frac {9}{{\mathrm e}^{4 x +4}-\ln \relax (3)-5}\right )+2\right )\) | \(30\) |
risch | \(-\ln \relax (x )-2 \ln \left (\ln \left (-{\mathrm e}^{4 x +4}+5+\ln \relax (3)\right )+\frac {i \left (4 i \ln \relax (3)-4 i\right )}{2}\right )\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 27, normalized size = 0.84 \begin {gather*} -\log \relax (x) - 2 \, \log \left (-2 \, \log \relax (3) + \log \left (-e^{\left (4 \, x + 4\right )} + \log \relax (3) + 5\right ) + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {2\,\ln \relax (3)-\ln \left (\frac {9}{\ln \relax (3)-{\mathrm {e}}^{4\,x+4}+5}\right )\,\left (\ln \relax (3)-{\mathrm {e}}^{4\,x+4}+5\right )-{\mathrm {e}}^{4\,x+4}\,\left (8\,x+2\right )+10}{10\,x-\ln \left (\frac {9}{\ln \relax (3)-{\mathrm {e}}^{4\,x+4}+5}\right )\,\left (5\,x+x\,\ln \relax (3)-x\,{\mathrm {e}}^{4\,x+4}\right )+2\,x\,\ln \relax (3)-2\,x\,{\mathrm {e}}^{4\,x+4}} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 26, normalized size = 0.81 \begin {gather*} - \log {\relax (x )} - 2 \log {\left (\log {\left (- \frac {9}{e^{4 x + 4} - 5 - \log {\relax (3 )}} \right )} - 2 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________