Optimal. Leaf size=22 \[ \frac {\log ^4\left (-\frac {627}{x}+x+4 x^2\right )}{81 e^{12}} \]
________________________________________________________________________________________
Rubi [F] time = 91.75, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (2508+4 x^2+32 x^3\right ) \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{e^{12} \left (-50787 x+81 x^3+324 x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {\left (2508+4 x^2+32 x^3\right ) \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{-50787 x+81 x^3+324 x^4} \, dx}{e^{12}}\\ &=\frac {\int \frac {\left (2508+4 x^2+32 x^3\right ) \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{x \left (-50787+81 x^2+324 x^3\right )} \, dx}{e^{12}}\\ &=\frac {\int \left (-\frac {4 \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{81 x}+\frac {8 x (1+6 x) \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{81 \left (-627+x^2+4 x^3\right )}\right ) \, dx}{e^{12}}\\ &=-\frac {4 \int \frac {\log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{x} \, dx}{81 e^{12}}+\frac {8 \int \frac {x (1+6 x) \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3} \, dx}{81 e^{12}}\\ &=-\frac {4 \log (x) \log ^3\left (-\frac {627-x^2-4 x^3}{x}\right )}{81 e^{12}}+\frac {8 \int \left (\frac {x \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3}+\frac {6 x^2 \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3}\right ) \, dx}{81 e^{12}}+\frac {4 \int \frac {x \left (\frac {2 x+12 x^2}{x}-\frac {-627+x^2+4 x^3}{x^2}\right ) \log (x) \log ^2\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3} \, dx}{27 e^{12}}\\ &=-\frac {4 \log (x) \log ^3\left (-\frac {627-x^2-4 x^3}{x}\right )}{81 e^{12}}+\frac {8 \int \frac {x \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3} \, dx}{81 e^{12}}+\frac {4 \int \frac {\left (-627-x^2-8 x^3\right ) \log (x) \log ^2\left (\frac {-627+x^2+4 x^3}{x}\right )}{x \left (627-x^2-4 x^3\right )} \, dx}{27 e^{12}}+\frac {16 \int \frac {x^2 \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3} \, dx}{27 e^{12}}\\ &=-\frac {4 \log (x) \log ^3\left (-\frac {627-x^2-4 x^3}{x}\right )}{81 e^{12}}+\frac {8 \int \frac {x \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3} \, dx}{81 e^{12}}+\frac {4 \int \left (-\frac {\log (x) \log ^2\left (\frac {-627+x^2+4 x^3}{x}\right )}{x}+\frac {2 (-1-6 x) x \log (x) \log ^2\left (\frac {-627+x^2+4 x^3}{x}\right )}{627-x^2-4 x^3}\right ) \, dx}{27 e^{12}}+\frac {16 \int \frac {x^2 \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3} \, dx}{27 e^{12}}\\ &=-\frac {4 \log (x) \log ^3\left (-\frac {627-x^2-4 x^3}{x}\right )}{81 e^{12}}+\frac {8 \int \frac {x \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3} \, dx}{81 e^{12}}-\frac {4 \int \frac {\log (x) \log ^2\left (\frac {-627+x^2+4 x^3}{x}\right )}{x} \, dx}{27 e^{12}}+\frac {8 \int \frac {(-1-6 x) x \log (x) \log ^2\left (\frac {-627+x^2+4 x^3}{x}\right )}{627-x^2-4 x^3} \, dx}{27 e^{12}}+\frac {16 \int \frac {x^2 \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3} \, dx}{27 e^{12}}\\ &=-\frac {4 \log (x) \log ^3\left (-\frac {627-x^2-4 x^3}{x}\right )}{81 e^{12}}+\frac {8 \int \frac {x \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3} \, dx}{81 e^{12}}-\frac {4 \int \frac {\log (x) \log ^2\left (\frac {-627+x^2+4 x^3}{x}\right )}{x} \, dx}{27 e^{12}}+\frac {8 \int \left (\frac {x \log (x) \log ^2\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3}+\frac {6 x^2 \log (x) \log ^2\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3}\right ) \, dx}{27 e^{12}}+\frac {16 \int \frac {x^2 \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3} \, dx}{27 e^{12}}\\ &=-\frac {4 \log (x) \log ^3\left (-\frac {627-x^2-4 x^3}{x}\right )}{81 e^{12}}+\frac {8 \int \frac {x \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3} \, dx}{81 e^{12}}-\frac {4 \int \frac {\log (x) \log ^2\left (\frac {-627+x^2+4 x^3}{x}\right )}{x} \, dx}{27 e^{12}}+\frac {8 \int \frac {x \log (x) \log ^2\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3} \, dx}{27 e^{12}}+\frac {16 \int \frac {x^2 \log ^3\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3} \, dx}{27 e^{12}}+\frac {16 \int \frac {x^2 \log (x) \log ^2\left (\frac {-627+x^2+4 x^3}{x}\right )}{-627+x^2+4 x^3} \, dx}{9 e^{12}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 22, normalized size = 1.00 \begin {gather*} \frac {\log ^4\left (-\frac {627}{x}+x+4 x^2\right )}{81 e^{12}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 21, normalized size = 0.95 \begin {gather*} \frac {1}{81} \, e^{\left (-12\right )} \log \left (\frac {4 \, x^{3} + x^{2} - 627}{x}\right )^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, {\left (8 \, x^{3} + x^{2} + 627\right )} e^{\left (-12\right )} \log \left (\frac {4 \, x^{3} + x^{2} - 627}{x}\right )^{3}}{81 \, {\left (4 \, x^{4} + x^{3} - 627 \, x\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 24, normalized size = 1.09
method | result | size |
norman | \(\frac {{\mathrm e}^{-12} \ln \left (\frac {4 x^{3}+x^{2}-627}{x}\right )^{4}}{81}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 236, normalized size = 10.73 \begin {gather*} \frac {4}{81} \, {\left (\log \left (4 \, x^{3} + x^{2} - 627\right ) - \log \relax (x)\right )} e^{\left (-12\right )} \log \left (\frac {4 \, x^{3} + x^{2} - 627}{x}\right )^{3} - \frac {1}{81} \, {\left (\log \left (4 \, x^{3} + x^{2} - 627\right )^{4} - 4 \, \log \left (4 \, x^{3} + x^{2} - 627\right )^{3} \log \relax (x) + 6 \, \log \left (4 \, x^{3} + x^{2} - 627\right )^{2} \log \relax (x)^{2} - 4 \, \log \left (4 \, x^{3} + x^{2} - 627\right ) \log \relax (x)^{3} + \log \relax (x)^{4} + 6 \, {\left (\log \left (4 \, x^{3} + x^{2} - 627\right )^{2} - 2 \, \log \left (4 \, x^{3} + x^{2} - 627\right ) \log \relax (x) + \log \relax (x)^{2}\right )} \log \left (\frac {4 \, x^{3} + x^{2} - 627}{x}\right )^{2} - 4 \, {\left (\log \left (4 \, x^{3} + x^{2} - 627\right )^{3} - 3 \, \log \left (4 \, x^{3} + x^{2} - 627\right )^{2} \log \relax (x) + 3 \, \log \left (4 \, x^{3} + x^{2} - 627\right ) \log \relax (x)^{2} - \log \relax (x)^{3}\right )} \log \left (\frac {4 \, x^{3} + x^{2} - 627}{x}\right )\right )} e^{\left (-12\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.81, size = 21, normalized size = 0.95 \begin {gather*} \frac {{\ln \left (\frac {4\,x^3+x^2-627}{x}\right )}^4\,{\mathrm {e}}^{-12}}{81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 19, normalized size = 0.86 \begin {gather*} \frac {\log {\left (\frac {4 x^{3} + x^{2} - 627}{x} \right )}^{4}}{81 e^{12}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________