Optimal. Leaf size=27 \[ e^{\frac {4 e^{e^2}}{\log \left (\frac {9 \left (3+\frac {4 x}{3}\right )}{x}\right )}} \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.45, antiderivative size = 47, normalized size of antiderivative = 1.74, number of steps used = 2, number of rules used = 2, integrand size = 73, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {1593, 2288} \begin {gather*} -\frac {9 e^{\frac {4 e^{e^2}}{\log \left (\frac {3 (4 x+9)}{x}\right )}} \log (x)}{x^2 \left (\frac {4}{x}-\frac {4 x+9}{x^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {4 e^{e^2}}{\log \left (\frac {27+12 x}{x}\right )}} \left (36 e^{e^2} \log (x)+(9+4 x) \log ^2\left (\frac {27+12 x}{x}\right )\right )}{x (9+4 x) \log ^2\left (\frac {27+12 x}{x}\right )} \, dx\\ &=-\frac {9 e^{\frac {4 e^{e^2}}{\log \left (\frac {3 (9+4 x)}{x}\right )}} \log (x)}{x^2 \left (\frac {4}{x}-\frac {9+4 x}{x^2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 22, normalized size = 0.81 \begin {gather*} e^{\frac {4 e^{e^2}}{\log \left (12+\frac {27}{x}\right )}} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 26, normalized size = 0.96 \begin {gather*} e^{\left (\frac {e^{\left (e^{2} + 2 \, \log \relax (2)\right )}}{\log \left (\frac {3 \, {\left (4 \, x + 9\right )}}{x}\right )}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 12.84, size = 121, normalized size = 4.48
method | result | size |
risch | \(\ln \relax (x ) {\mathrm e}^{\frac {8 \,{\mathrm e}^{{\mathrm e}^{2}}}{-i \pi \mathrm {csgn}\left (\frac {i \left (x +\frac {9}{4}\right )}{x}\right )^{3}+i \pi \mathrm {csgn}\left (\frac {i \left (x +\frac {9}{4}\right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right )+i \pi \mathrm {csgn}\left (\frac {i \left (x +\frac {9}{4}\right )}{x}\right )^{2} \mathrm {csgn}\left (i \left (x +\frac {9}{4}\right )\right )-i \pi \,\mathrm {csgn}\left (\frac {i \left (x +\frac {9}{4}\right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (x +\frac {9}{4}\right )\right )+2 \ln \relax (3)+4 \ln \relax (2)-2 \ln \relax (x )+2 \ln \left (x +\frac {9}{4}\right )}}\) | \(121\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (4 \, x + 9\right )} \log \left (\frac {3 \, {\left (4 \, x + 9\right )}}{x}\right )^{2} + 36 \, e^{\left (e^{2}\right )} \log \relax (x)\right )} e^{\left (\frac {4 \, e^{\left (e^{2}\right )}}{\log \left (\frac {3 \, {\left (4 \, x + 9\right )}}{x}\right )}\right )}}{{\left (4 \, x^{2} + 9 \, x\right )} \log \left (\frac {3 \, {\left (4 \, x + 9\right )}}{x}\right )^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{\frac {{\mathrm {e}}^{{\mathrm {e}}^2+2\,\ln \relax (2)}}{\ln \left (\frac {12\,x+27}{x}\right )}}\,\left (\left (4\,x+9\right )\,{\ln \left (\frac {12\,x+27}{x}\right )}^2+9\,{\mathrm {e}}^{{\mathrm {e}}^2+2\,\ln \relax (2)}\,\ln \relax (x)\right )}{{\ln \left (\frac {12\,x+27}{x}\right )}^2\,\left (4\,x^2+9\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 8.18, size = 19, normalized size = 0.70 \begin {gather*} e^{\frac {4 e^{e^{2}}}{\log {\left (\frac {12 x + 27}{x} \right )}}} \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________