Optimal. Leaf size=20 \[ e^3+x+\frac {3 \log (3)}{x \log (x)}-\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.20, antiderivative size = 17, normalized size of antiderivative = 0.85, number of steps used = 9, number of rules used = 5, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {6742, 43, 2306, 2309, 2178} \begin {gather*} x-\log (x)+\frac {3 \log (3)}{x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 2178
Rule 2306
Rule 2309
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-1+x}{x}-\frac {3 \log (3)}{x^2 \log ^2(x)}-\frac {3 \log (3)}{x^2 \log (x)}\right ) \, dx\\ &=-\left ((3 \log (3)) \int \frac {1}{x^2 \log ^2(x)} \, dx\right )-(3 \log (3)) \int \frac {1}{x^2 \log (x)} \, dx+\int \frac {-1+x}{x} \, dx\\ &=\frac {3 \log (3)}{x \log (x)}+(3 \log (3)) \int \frac {1}{x^2 \log (x)} \, dx-(3 \log (3)) \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )+\int \left (1-\frac {1}{x}\right ) \, dx\\ &=x-3 \text {Ei}(-\log (x)) \log (3)+\frac {3 \log (3)}{x \log (x)}-\log (x)+(3 \log (3)) \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log (x)\right )\\ &=x+\frac {3 \log (3)}{x \log (x)}-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 17, normalized size = 0.85 \begin {gather*} x+\frac {3 \log (3)}{x \log (x)}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 26, normalized size = 1.30 \begin {gather*} \frac {x^{2} \log \relax (x) - x \log \relax (x)^{2} + 3 \, \log \relax (3)}{x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 17, normalized size = 0.85 \begin {gather*} x + \frac {3 \, \log \relax (3)}{x \log \relax (x)} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 18, normalized size = 0.90
method | result | size |
risch | \(x -\ln \relax (x )+\frac {3 \ln \relax (3)}{\ln \relax (x ) x}\) | \(18\) |
norman | \(\frac {x^{2} \ln \relax (x )-x \ln \relax (x )^{2}+3 \ln \relax (3)}{x \ln \relax (x )}\) | \(27\) |
default | \(x -\ln \relax (x )+3 \ln \relax (3) \expIntegralEi \left (1, \ln \relax (x )\right )-3 \ln \relax (3) \left (-\frac {1}{x \ln \relax (x )}+\expIntegralEi \left (1, \ln \relax (x )\right )\right )\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 23, normalized size = 1.15 \begin {gather*} -3 \, {\rm Ei}\left (-\log \relax (x)\right ) \log \relax (3) + 3 \, \Gamma \left (-1, \log \relax (x)\right ) \log \relax (3) + x - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.33, size = 17, normalized size = 0.85 \begin {gather*} x-\ln \relax (x)+\frac {3\,\ln \relax (3)}{x\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 14, normalized size = 0.70 \begin {gather*} x - \log {\relax (x )} + \frac {3 \log {\relax (3 )}}{x \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________