Optimal. Leaf size=29 \[ x+e^x x \left (2-\frac {4^{4 (3+x)} (1-e)+x}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 29, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 4, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.129, Rules used = {2176, 2194, 2287, 12} \begin {gather*} x-(1-e) 256^{x+3} e^x-e^x+e^x (x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2287
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x-((1-e) (1+\log (256))) \int 4^{12+4 x} e^x \, dx+\int e^x (1+x) \, dx\\ &=x+e^x (1+x)-((1-e) (1+\log (256))) \int 16777216 e^{x (1+\log (256))} \, dx-\int e^x \, dx\\ &=-e^x+x+e^x (1+x)-(16777216 (1-e) (1+\log (256))) \int e^{x (1+\log (256))} \, dx\\ &=-e^x-256^{3+x} (1-e) e^x+x+e^x (1+x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 20, normalized size = 0.69 \begin {gather*} 16777216 (-1+e) e^{x (1+\log (256))}+x+e^x x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 20, normalized size = 0.69 \begin {gather*} 2^{8 \, x + 24} {\left (e - 1\right )} e^{x} + x e^{x} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 39, normalized size = 1.34 \begin {gather*} x e^{x} + x + \frac {{\left (8 \, {\left (e - 1\right )} \log \relax (2) + e - 1\right )} e^{\left (8 \, x \log \relax (2) + x + 24 \, \log \relax (2)\right )}}{8 \, \log \relax (2) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 0.83
method | result | size |
norman | \(x +{\mathrm e}^{x} x +\left ({\mathrm e}-1\right ) {\mathrm e}^{x} {\mathrm e}^{2 \left (4 x +12\right ) \ln \relax (2)}\) | \(24\) |
risch | \(2^{8 x +24} {\mathrm e}^{x +1}-{\mathrm e}^{x} 2^{8 x +24}+{\mathrm e}^{x} x +x\) | \(30\) |
default | \({\mathrm e}^{x} x +x +\frac {8 \,{\mathrm e}^{x +2 \left (4 x +12\right ) \ln \relax (2)} {\mathrm e} \ln \relax (2)}{8 \ln \relax (2)+1}+\frac {{\mathrm e}^{x +2 \left (4 x +12\right ) \ln \relax (2)} {\mathrm e}}{8 \ln \relax (2)+1}-\frac {8 \,{\mathrm e}^{x +2 \left (4 x +12\right ) \ln \relax (2)} \ln \relax (2)}{8 \ln \relax (2)+1}-\frac {{\mathrm e}^{x +2 \left (4 x +12\right ) \ln \relax (2)}}{8 \ln \relax (2)+1}\) | \(102\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 40, normalized size = 1.38 \begin {gather*} {\left (x - 1\right )} e^{x} + x + \frac {16777216 \, {\left (8 \, {\left (e - 1\right )} \log \relax (2) + e - 1\right )} e^{\left (8 \, x \log \relax (2) + x\right )}}{8 \, \log \relax (2) + 1} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 35, normalized size = 1.21 \begin {gather*} x+x\,{\mathrm {e}}^x+\frac {16777216\,2^{8\,x}\,{\mathrm {e}}^x\,\left (\mathrm {e}-8\,\ln \relax (2)+8\,\mathrm {e}\,\ln \relax (2)-1\right )}{\ln \left (256\right )+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.38, size = 41, normalized size = 1.41 \begin {gather*} x e^{x} + x + \frac {16777216 \left (-1 + e + \left (-8 + 8 e\right ) \log {\relax (2 )}\right ) e^{x} e^{8 x \log {\relax (2 )}}}{1 + 8 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________