Optimal. Leaf size=28 \[ \log \left (e^{x^2}-\frac {(4+x)^2}{x^2}+x \left (6+\frac {5+x}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {32+8 x+7 x^3+2 e^{x^2} x^4}{-16 x-8 x^2+4 x^3+e^{x^2} x^3+7 x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 x-\frac {-32-8 x-32 x^2-23 x^3+8 x^4+14 x^5}{x \left (-16-8 x+4 x^2+e^{x^2} x^2+7 x^3\right )}\right ) \, dx\\ &=x^2-\int \frac {-32-8 x-32 x^2-23 x^3+8 x^4+14 x^5}{x \left (-16-8 x+4 x^2+e^{x^2} x^2+7 x^3\right )} \, dx\\ &=x^2-\int \left (-\frac {8}{-16-8 x+4 x^2+e^{x^2} x^2+7 x^3}-\frac {32}{x \left (-16-8 x+4 x^2+e^{x^2} x^2+7 x^3\right )}-\frac {32 x}{-16-8 x+4 x^2+e^{x^2} x^2+7 x^3}-\frac {23 x^2}{-16-8 x+4 x^2+e^{x^2} x^2+7 x^3}+\frac {8 x^3}{-16-8 x+4 x^2+e^{x^2} x^2+7 x^3}+\frac {14 x^4}{-16-8 x+4 x^2+e^{x^2} x^2+7 x^3}\right ) \, dx\\ &=x^2+8 \int \frac {1}{-16-8 x+4 x^2+e^{x^2} x^2+7 x^3} \, dx-8 \int \frac {x^3}{-16-8 x+4 x^2+e^{x^2} x^2+7 x^3} \, dx-14 \int \frac {x^4}{-16-8 x+4 x^2+e^{x^2} x^2+7 x^3} \, dx+23 \int \frac {x^2}{-16-8 x+4 x^2+e^{x^2} x^2+7 x^3} \, dx+32 \int \frac {1}{x \left (-16-8 x+4 x^2+e^{x^2} x^2+7 x^3\right )} \, dx+32 \int \frac {x}{-16-8 x+4 x^2+e^{x^2} x^2+7 x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 31, normalized size = 1.11 \begin {gather*} -2 \log (x)+\log \left (16+8 x-4 x^2-e^{x^2} x^2-7 x^3\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 28, normalized size = 1.00 \begin {gather*} \log \left (\frac {7 \, x^{3} + x^{2} e^{\left (x^{2}\right )} + 4 \, x^{2} - 8 \, x - 16}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.37, size = 29, normalized size = 1.04 \begin {gather*} \log \left (7 \, x^{3} + x^{2} e^{\left (x^{2}\right )} + 4 \, x^{2} - 8 \, x - 16\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 26, normalized size = 0.93
method | result | size |
risch | \(\ln \left ({\mathrm e}^{x^{2}}+\frac {7 x^{3}+4 x^{2}-8 x -16}{x^{2}}\right )\) | \(26\) |
norman | \(-2 \ln \relax (x )+\ln \left (x^{2} {\mathrm e}^{x^{2}}+7 x^{3}+4 x^{2}-8 x -16\right )\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 28, normalized size = 1.00 \begin {gather*} \log \left (\frac {7 \, x^{3} + x^{2} e^{\left (x^{2}\right )} + 4 \, x^{2} - 8 \, x - 16}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.47, size = 29, normalized size = 1.04 \begin {gather*} \ln \left (x^2\,{\mathrm {e}}^{x^2}-8\,x+4\,x^2+7\,x^3-16\right )-2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 24, normalized size = 0.86 \begin {gather*} \log {\left (e^{x^{2}} + \frac {7 x^{3} + 4 x^{2} - 8 x - 16}{x^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________