Optimal. Leaf size=26 \[ -4+\left (4+e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x}\right )^2 x \]
________________________________________________________________________________________
Rubi [F] time = 4.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16 \log ^2\left (x^2\right )+e^{2 e^{e^{\frac {x}{\log \left (x^2\right )}}}+4 x} \left ((1+4 x) \log ^2\left (x^2\right )+e^{e^{\frac {x}{\log \left (x^2\right )}}+\frac {x}{\log \left (x^2\right )}} \left (-4 x+2 x \log \left (x^2\right )\right )\right )+e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x} \left ((8+16 x) \log ^2\left (x^2\right )+e^{e^{\frac {x}{\log \left (x^2\right )}}+\frac {x}{\log \left (x^2\right )}} \left (-16 x+8 x \log \left (x^2\right )\right )\right )}{\log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\left (4+e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x}\right ) \left (4+e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x}+4 e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x} x\right )+\frac {2 e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+2 x+\frac {x}{\log \left (x^2\right )}} \left (4+e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x}\right ) x \left (-2+\log \left (x^2\right )\right )}{\log ^2\left (x^2\right )}\right ) \, dx\\ &=2 \int \frac {e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+2 x+\frac {x}{\log \left (x^2\right )}} \left (4+e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x}\right ) x \left (-2+\log \left (x^2\right )\right )}{\log ^2\left (x^2\right )} \, dx+\int \left (4+e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x}\right ) \left (4+e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x}+4 e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x} x\right ) \, dx\\ &=2 \int \left (\frac {4 e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+2 x+\frac {x}{\log \left (x^2\right )}} x \left (-2+\log \left (x^2\right )\right )}{\log ^2\left (x^2\right )}+\frac {e^{2 e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+4 x+\frac {x}{\log \left (x^2\right )}} x \left (-2+\log \left (x^2\right )\right )}{\log ^2\left (x^2\right )}\right ) \, dx+\int \left (4+e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x}\right ) \left (4+e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x} (1+4 x)\right ) \, dx\\ &=2 \int \frac {e^{2 e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+4 x+\frac {x}{\log \left (x^2\right )}} x \left (-2+\log \left (x^2\right )\right )}{\log ^2\left (x^2\right )} \, dx+8 \int \frac {e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+2 x+\frac {x}{\log \left (x^2\right )}} x \left (-2+\log \left (x^2\right )\right )}{\log ^2\left (x^2\right )} \, dx+\int \left (16+8 e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x} (1+2 x)+e^{2 \left (e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x\right )} (1+4 x)\right ) \, dx\\ &=16 x+2 \int \left (-\frac {2 e^{2 e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+4 x+\frac {x}{\log \left (x^2\right )}} x}{\log ^2\left (x^2\right )}+\frac {e^{2 e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+4 x+\frac {x}{\log \left (x^2\right )}} x}{\log \left (x^2\right )}\right ) \, dx+8 \int e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x} (1+2 x) \, dx+8 \int \left (-\frac {2 e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+2 x+\frac {x}{\log \left (x^2\right )}} x}{\log ^2\left (x^2\right )}+\frac {e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+2 x+\frac {x}{\log \left (x^2\right )}} x}{\log \left (x^2\right )}\right ) \, dx+\int e^{2 \left (e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x\right )} (1+4 x) \, dx\\ &=16 x+2 \int \frac {e^{2 e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+4 x+\frac {x}{\log \left (x^2\right )}} x}{\log \left (x^2\right )} \, dx-4 \int \frac {e^{2 e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+4 x+\frac {x}{\log \left (x^2\right )}} x}{\log ^2\left (x^2\right )} \, dx+8 \int \left (e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x}+2 e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x} x\right ) \, dx+8 \int \frac {e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+2 x+\frac {x}{\log \left (x^2\right )}} x}{\log \left (x^2\right )} \, dx-16 \int \frac {e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+2 x+\frac {x}{\log \left (x^2\right )}} x}{\log ^2\left (x^2\right )} \, dx+\int \left (e^{2 \left (e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x\right )}+4 e^{2 \left (e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x\right )} x\right ) \, dx\\ &=16 x+2 \int \frac {e^{2 e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+4 x+\frac {x}{\log \left (x^2\right )}} x}{\log \left (x^2\right )} \, dx+4 \int e^{2 \left (e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x\right )} x \, dx-4 \int \frac {e^{2 e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+4 x+\frac {x}{\log \left (x^2\right )}} x}{\log ^2\left (x^2\right )} \, dx+8 \int e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x} \, dx+8 \int \frac {e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+2 x+\frac {x}{\log \left (x^2\right )}} x}{\log \left (x^2\right )} \, dx+16 \int e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x} x \, dx-16 \int \frac {e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+e^{\frac {x}{\log \left (x^2\right )}}+2 x+\frac {x}{\log \left (x^2\right )}} x}{\log ^2\left (x^2\right )} \, dx+\int e^{2 \left (e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 24, normalized size = 0.92 \begin {gather*} \left (4+e^{e^{e^{\frac {x}{\log \left (x^2\right )}}}+2 x}\right )^2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.55, size = 108, normalized size = 4.15 \begin {gather*} x e^{\left (2 \, {\left (2 \, x e^{\left (\frac {x}{\log \left (x^{2}\right )}\right )} + e^{\left (\frac {e^{\left (\frac {x}{\log \left (x^{2}\right )}\right )} \log \left (x^{2}\right ) + x}{\log \left (x^{2}\right )}\right )}\right )} e^{\left (-\frac {x}{\log \left (x^{2}\right )}\right )}\right )} + 8 \, x e^{\left ({\left (2 \, x e^{\left (\frac {x}{\log \left (x^{2}\right )}\right )} + e^{\left (\frac {e^{\left (\frac {x}{\log \left (x^{2}\right )}\right )} \log \left (x^{2}\right ) + x}{\log \left (x^{2}\right )}\right )}\right )} e^{\left (-\frac {x}{\log \left (x^{2}\right )}\right )}\right )} + 16 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.39, size = 42, normalized size = 1.62
method | result | size |
risch | \(x \,{\mathrm e}^{2 \,{\mathrm e}^{{\mathrm e}^{\frac {x}{\ln \left (x^{2}\right )}}}+4 x}+8 x \,{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{\frac {x}{\ln \left (x^{2}\right )}}}+2 x}+16 x\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.77, size = 39, normalized size = 1.50 \begin {gather*} x e^{\left (4 \, x + 2 \, e^{\left (e^{\left (\frac {x}{2 \, \log \relax (x)}\right )}\right )}\right )} + 8 \, x e^{\left (2 \, x + e^{\left (e^{\left (\frac {x}{2 \, \log \relax (x)}\right )}\right )}\right )} + 16 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.69, size = 41, normalized size = 1.58 \begin {gather*} 16\,x+x\,{\mathrm {e}}^{2\,{\mathrm {e}}^{{\mathrm {e}}^{\frac {x}{\ln \left (x^2\right )}}}}\,{\mathrm {e}}^{4\,x}+8\,x\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^{\frac {x}{\ln \left (x^2\right )}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 18.87, size = 39, normalized size = 1.50 \begin {gather*} 8 x e^{2 x + e^{e^{\frac {x}{\log {\left (x^{2} \right )}}}}} + x e^{4 x + 2 e^{e^{\frac {x}{\log {\left (x^{2} \right )}}}}} + 16 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________