3.26.69 16log2(x2)+e2eexlog(x2)+4x((1+4x)log2(x2)+eexlog(x2)+xlog(x2)(4x+2xlog(x2)))+eeexlog(x2)+2x((8+16x)log2(x2)+eexlog(x2)+xlog(x2)(16x+8xlog(x2)))log2(x2)dx

Optimal. Leaf size=26 4+(4+eeexlog(x2)+2x)2x

________________________________________________________________________________________

Rubi [F]  time = 4.99, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 16log2(x2)+e2eexlog(x2)+4x((1+4x)log2(x2)+eexlog(x2)+xlog(x2)(4x+2xlog(x2)))+eeexlog(x2)+2x((8+16x)log2(x2)+eexlog(x2)+xlog(x2)(16x+8xlog(x2)))log2(x2)dx

Verification is not applicable to the result.

[In]

Int[(16*Log[x^2]^2 + E^(2*E^E^(x/Log[x^2]) + 4*x)*((1 + 4*x)*Log[x^2]^2 + E^(E^(x/Log[x^2]) + x/Log[x^2])*(-4*
x + 2*x*Log[x^2])) + E^(E^E^(x/Log[x^2]) + 2*x)*((8 + 16*x)*Log[x^2]^2 + E^(E^(x/Log[x^2]) + x/Log[x^2])*(-16*
x + 8*x*Log[x^2])))/Log[x^2]^2,x]

[Out]

16*x + 8*Defer[Int][E^(E^E^(x/Log[x^2]) + 2*x), x] + Defer[Int][E^(2*(E^E^(x/Log[x^2]) + 2*x)), x] + 16*Defer[
Int][E^(E^E^(x/Log[x^2]) + 2*x)*x, x] + 4*Defer[Int][E^(2*(E^E^(x/Log[x^2]) + 2*x))*x, x] - 16*Defer[Int][(E^(
E^E^(x/Log[x^2]) + E^(x/Log[x^2]) + 2*x + x/Log[x^2])*x)/Log[x^2]^2, x] - 4*Defer[Int][(E^(2*E^E^(x/Log[x^2])
+ E^(x/Log[x^2]) + 4*x + x/Log[x^2])*x)/Log[x^2]^2, x] + 8*Defer[Int][(E^(E^E^(x/Log[x^2]) + E^(x/Log[x^2]) +
2*x + x/Log[x^2])*x)/Log[x^2], x] + 2*Defer[Int][(E^(2*E^E^(x/Log[x^2]) + E^(x/Log[x^2]) + 4*x + x/Log[x^2])*x
)/Log[x^2], x]

Rubi steps

integral=((4+eeexlog(x2)+2x)(4+eeexlog(x2)+2x+4eeexlog(x2)+2xx)+2eeexlog(x2)+exlog(x2)+2x+xlog(x2)(4+eeexlog(x2)+2x)x(2+log(x2))log2(x2))dx=2eeexlog(x2)+exlog(x2)+2x+xlog(x2)(4+eeexlog(x2)+2x)x(2+log(x2))log2(x2)dx+(4+eeexlog(x2)+2x)(4+eeexlog(x2)+2x+4eeexlog(x2)+2xx)dx=2(4eeexlog(x2)+exlog(x2)+2x+xlog(x2)x(2+log(x2))log2(x2)+e2eexlog(x2)+exlog(x2)+4x+xlog(x2)x(2+log(x2))log2(x2))dx+(4+eeexlog(x2)+2x)(4+eeexlog(x2)+2x(1+4x))dx=2e2eexlog(x2)+exlog(x2)+4x+xlog(x2)x(2+log(x2))log2(x2)dx+8eeexlog(x2)+exlog(x2)+2x+xlog(x2)x(2+log(x2))log2(x2)dx+(16+8eeexlog(x2)+2x(1+2x)+e2(eexlog(x2)+2x)(1+4x))dx=16x+2(2e2eexlog(x2)+exlog(x2)+4x+xlog(x2)xlog2(x2)+e2eexlog(x2)+exlog(x2)+4x+xlog(x2)xlog(x2))dx+8eeexlog(x2)+2x(1+2x)dx+8(2eeexlog(x2)+exlog(x2)+2x+xlog(x2)xlog2(x2)+eeexlog(x2)+exlog(x2)+2x+xlog(x2)xlog(x2))dx+e2(eexlog(x2)+2x)(1+4x)dx=16x+2e2eexlog(x2)+exlog(x2)+4x+xlog(x2)xlog(x2)dx4e2eexlog(x2)+exlog(x2)+4x+xlog(x2)xlog2(x2)dx+8(eeexlog(x2)+2x+2eeexlog(x2)+2xx)dx+8eeexlog(x2)+exlog(x2)+2x+xlog(x2)xlog(x2)dx16eeexlog(x2)+exlog(x2)+2x+xlog(x2)xlog2(x2)dx+(e2(eexlog(x2)+2x)+4e2(eexlog(x2)+2x)x)dx=16x+2e2eexlog(x2)+exlog(x2)+4x+xlog(x2)xlog(x2)dx+4e2(eexlog(x2)+2x)xdx4e2eexlog(x2)+exlog(x2)+4x+xlog(x2)xlog2(x2)dx+8eeexlog(x2)+2xdx+8eeexlog(x2)+exlog(x2)+2x+xlog(x2)xlog(x2)dx+16eeexlog(x2)+2xxdx16eeexlog(x2)+exlog(x2)+2x+xlog(x2)xlog2(x2)dx+e2(eexlog(x2)+2x)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.27, size = 24, normalized size = 0.92 (4+eeexlog(x2)+2x)2x

Antiderivative was successfully verified.

[In]

Integrate[(16*Log[x^2]^2 + E^(2*E^E^(x/Log[x^2]) + 4*x)*((1 + 4*x)*Log[x^2]^2 + E^(E^(x/Log[x^2]) + x/Log[x^2]
)*(-4*x + 2*x*Log[x^2])) + E^(E^E^(x/Log[x^2]) + 2*x)*((8 + 16*x)*Log[x^2]^2 + E^(E^(x/Log[x^2]) + x/Log[x^2])
*(-16*x + 8*x*Log[x^2])))/Log[x^2]^2,x]

[Out]

(4 + E^(E^E^(x/Log[x^2]) + 2*x))^2*x

________________________________________________________________________________________

fricas [B]  time = 0.55, size = 108, normalized size = 4.15 xe(2(2xe(xlog(x2))+e(e(xlog(x2))log(x2)+xlog(x2)))e(xlog(x2)))+8xe((2xe(xlog(x2))+e(e(xlog(x2))log(x2)+xlog(x2)))e(xlog(x2)))+16x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x*log(x^2)-4*x)*exp(x/log(x^2))*exp(exp(x/log(x^2)))+(4*x+1)*log(x^2)^2)*exp(exp(exp(x/log(x^2)
))+2*x)^2+((8*x*log(x^2)-16*x)*exp(x/log(x^2))*exp(exp(x/log(x^2)))+(16*x+8)*log(x^2)^2)*exp(exp(exp(x/log(x^2
)))+2*x)+16*log(x^2)^2)/log(x^2)^2,x, algorithm="fricas")

[Out]

x*e^(2*(2*x*e^(x/log(x^2)) + e^((e^(x/log(x^2))*log(x^2) + x)/log(x^2)))*e^(-x/log(x^2))) + 8*x*e^((2*x*e^(x/l
og(x^2)) + e^((e^(x/log(x^2))*log(x^2) + x)/log(x^2)))*e^(-x/log(x^2))) + 16*x

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 undef

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x*log(x^2)-4*x)*exp(x/log(x^2))*exp(exp(x/log(x^2)))+(4*x+1)*log(x^2)^2)*exp(exp(exp(x/log(x^2)
))+2*x)^2+((8*x*log(x^2)-16*x)*exp(x/log(x^2))*exp(exp(x/log(x^2)))+(16*x+8)*log(x^2)^2)*exp(exp(exp(x/log(x^2
)))+2*x)+16*log(x^2)^2)/log(x^2)^2,x, algorithm="giac")

[Out]

undef

________________________________________________________________________________________

maple [A]  time = 0.39, size = 42, normalized size = 1.62




method result size



risch xe2eexln(x2)+4x+8xeeexln(x2)+2x+16x 42



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((2*x*ln(x^2)-4*x)*exp(x/ln(x^2))*exp(exp(x/ln(x^2)))+(4*x+1)*ln(x^2)^2)*exp(exp(exp(x/ln(x^2)))+2*x)^2+(
(8*x*ln(x^2)-16*x)*exp(x/ln(x^2))*exp(exp(x/ln(x^2)))+(16*x+8)*ln(x^2)^2)*exp(exp(exp(x/ln(x^2)))+2*x)+16*ln(x
^2)^2)/ln(x^2)^2,x,method=_RETURNVERBOSE)

[Out]

x*exp(2*exp(exp(x/ln(x^2)))+4*x)+8*x*exp(exp(exp(x/ln(x^2)))+2*x)+16*x

________________________________________________________________________________________

maxima [A]  time = 0.77, size = 39, normalized size = 1.50 xe(4x+2e(e(x2log(x))))+8xe(2x+e(e(x2log(x))))+16x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x*log(x^2)-4*x)*exp(x/log(x^2))*exp(exp(x/log(x^2)))+(4*x+1)*log(x^2)^2)*exp(exp(exp(x/log(x^2)
))+2*x)^2+((8*x*log(x^2)-16*x)*exp(x/log(x^2))*exp(exp(x/log(x^2)))+(16*x+8)*log(x^2)^2)*exp(exp(exp(x/log(x^2
)))+2*x)+16*log(x^2)^2)/log(x^2)^2,x, algorithm="maxima")

[Out]

x*e^(4*x + 2*e^(e^(1/2*x/log(x)))) + 8*x*e^(2*x + e^(e^(1/2*x/log(x)))) + 16*x

________________________________________________________________________________________

mupad [B]  time = 1.69, size = 41, normalized size = 1.58 16x+xe2eexln(x2)e4x+8xe2xeeexln(x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(4*x + 2*exp(exp(x/log(x^2))))*(log(x^2)^2*(4*x + 1) - exp(exp(x/log(x^2)))*exp(x/log(x^2))*(4*x - 2*x
*log(x^2))) + 16*log(x^2)^2 + exp(2*x + exp(exp(x/log(x^2))))*(log(x^2)^2*(16*x + 8) - exp(exp(x/log(x^2)))*ex
p(x/log(x^2))*(16*x - 8*x*log(x^2))))/log(x^2)^2,x)

[Out]

16*x + x*exp(2*exp(exp(x/log(x^2))))*exp(4*x) + 8*x*exp(2*x)*exp(exp(exp(x/log(x^2))))

________________________________________________________________________________________

sympy [A]  time = 18.87, size = 39, normalized size = 1.50 8xe2x+eexlog(x2)+xe4x+2eexlog(x2)+16x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x*ln(x**2)-4*x)*exp(x/ln(x**2))*exp(exp(x/ln(x**2)))+(4*x+1)*ln(x**2)**2)*exp(exp(exp(x/ln(x**2
)))+2*x)**2+((8*x*ln(x**2)-16*x)*exp(x/ln(x**2))*exp(exp(x/ln(x**2)))+(16*x+8)*ln(x**2)**2)*exp(exp(exp(x/ln(x
**2)))+2*x)+16*ln(x**2)**2)/ln(x**2)**2,x)

[Out]

8*x*exp(2*x + exp(exp(x/log(x**2)))) + x*exp(4*x + 2*exp(exp(x/log(x**2)))) + 16*x

________________________________________________________________________________________