3.26.69
Optimal. Leaf size=26
________________________________________________________________________________________
Rubi [F] time = 4.99, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(16*Log[x^2]^2 + E^(2*E^E^(x/Log[x^2]) + 4*x)*((1 + 4*x)*Log[x^2]^2 + E^(E^(x/Log[x^2]) + x/Log[x^2])*(-4*
x + 2*x*Log[x^2])) + E^(E^E^(x/Log[x^2]) + 2*x)*((8 + 16*x)*Log[x^2]^2 + E^(E^(x/Log[x^2]) + x/Log[x^2])*(-16*
x + 8*x*Log[x^2])))/Log[x^2]^2,x]
[Out]
16*x + 8*Defer[Int][E^(E^E^(x/Log[x^2]) + 2*x), x] + Defer[Int][E^(2*(E^E^(x/Log[x^2]) + 2*x)), x] + 16*Defer[
Int][E^(E^E^(x/Log[x^2]) + 2*x)*x, x] + 4*Defer[Int][E^(2*(E^E^(x/Log[x^2]) + 2*x))*x, x] - 16*Defer[Int][(E^(
E^E^(x/Log[x^2]) + E^(x/Log[x^2]) + 2*x + x/Log[x^2])*x)/Log[x^2]^2, x] - 4*Defer[Int][(E^(2*E^E^(x/Log[x^2])
+ E^(x/Log[x^2]) + 4*x + x/Log[x^2])*x)/Log[x^2]^2, x] + 8*Defer[Int][(E^(E^E^(x/Log[x^2]) + E^(x/Log[x^2]) +
2*x + x/Log[x^2])*x)/Log[x^2], x] + 2*Defer[Int][(E^(2*E^E^(x/Log[x^2]) + E^(x/Log[x^2]) + 4*x + x/Log[x^2])*x
)/Log[x^2], x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 24, normalized size = 0.92
Antiderivative was successfully verified.
[In]
Integrate[(16*Log[x^2]^2 + E^(2*E^E^(x/Log[x^2]) + 4*x)*((1 + 4*x)*Log[x^2]^2 + E^(E^(x/Log[x^2]) + x/Log[x^2]
)*(-4*x + 2*x*Log[x^2])) + E^(E^E^(x/Log[x^2]) + 2*x)*((8 + 16*x)*Log[x^2]^2 + E^(E^(x/Log[x^2]) + x/Log[x^2])
*(-16*x + 8*x*Log[x^2])))/Log[x^2]^2,x]
[Out]
(4 + E^(E^E^(x/Log[x^2]) + 2*x))^2*x
________________________________________________________________________________________
fricas [B] time = 0.55, size = 108, normalized size = 4.15
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x*log(x^2)-4*x)*exp(x/log(x^2))*exp(exp(x/log(x^2)))+(4*x+1)*log(x^2)^2)*exp(exp(exp(x/log(x^2)
))+2*x)^2+((8*x*log(x^2)-16*x)*exp(x/log(x^2))*exp(exp(x/log(x^2)))+(16*x+8)*log(x^2)^2)*exp(exp(exp(x/log(x^2
)))+2*x)+16*log(x^2)^2)/log(x^2)^2,x, algorithm="fricas")
[Out]
x*e^(2*(2*x*e^(x/log(x^2)) + e^((e^(x/log(x^2))*log(x^2) + x)/log(x^2)))*e^(-x/log(x^2))) + 8*x*e^((2*x*e^(x/l
og(x^2)) + e^((e^(x/log(x^2))*log(x^2) + x)/log(x^2)))*e^(-x/log(x^2))) + 16*x
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x*log(x^2)-4*x)*exp(x/log(x^2))*exp(exp(x/log(x^2)))+(4*x+1)*log(x^2)^2)*exp(exp(exp(x/log(x^2)
))+2*x)^2+((8*x*log(x^2)-16*x)*exp(x/log(x^2))*exp(exp(x/log(x^2)))+(16*x+8)*log(x^2)^2)*exp(exp(exp(x/log(x^2
)))+2*x)+16*log(x^2)^2)/log(x^2)^2,x, algorithm="giac")
[Out]
undef
________________________________________________________________________________________
maple [A] time = 0.39, size = 42, normalized size = 1.62
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((2*x*ln(x^2)-4*x)*exp(x/ln(x^2))*exp(exp(x/ln(x^2)))+(4*x+1)*ln(x^2)^2)*exp(exp(exp(x/ln(x^2)))+2*x)^2+(
(8*x*ln(x^2)-16*x)*exp(x/ln(x^2))*exp(exp(x/ln(x^2)))+(16*x+8)*ln(x^2)^2)*exp(exp(exp(x/ln(x^2)))+2*x)+16*ln(x
^2)^2)/ln(x^2)^2,x,method=_RETURNVERBOSE)
[Out]
x*exp(2*exp(exp(x/ln(x^2)))+4*x)+8*x*exp(exp(exp(x/ln(x^2)))+2*x)+16*x
________________________________________________________________________________________
maxima [A] time = 0.77, size = 39, normalized size = 1.50
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x*log(x^2)-4*x)*exp(x/log(x^2))*exp(exp(x/log(x^2)))+(4*x+1)*log(x^2)^2)*exp(exp(exp(x/log(x^2)
))+2*x)^2+((8*x*log(x^2)-16*x)*exp(x/log(x^2))*exp(exp(x/log(x^2)))+(16*x+8)*log(x^2)^2)*exp(exp(exp(x/log(x^2
)))+2*x)+16*log(x^2)^2)/log(x^2)^2,x, algorithm="maxima")
[Out]
x*e^(4*x + 2*e^(e^(1/2*x/log(x)))) + 8*x*e^(2*x + e^(e^(1/2*x/log(x)))) + 16*x
________________________________________________________________________________________
mupad [B] time = 1.69, size = 41, normalized size = 1.58
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(4*x + 2*exp(exp(x/log(x^2))))*(log(x^2)^2*(4*x + 1) - exp(exp(x/log(x^2)))*exp(x/log(x^2))*(4*x - 2*x
*log(x^2))) + 16*log(x^2)^2 + exp(2*x + exp(exp(x/log(x^2))))*(log(x^2)^2*(16*x + 8) - exp(exp(x/log(x^2)))*ex
p(x/log(x^2))*(16*x - 8*x*log(x^2))))/log(x^2)^2,x)
[Out]
16*x + x*exp(2*exp(exp(x/log(x^2))))*exp(4*x) + 8*x*exp(2*x)*exp(exp(exp(x/log(x^2))))
________________________________________________________________________________________
sympy [A] time = 18.87, size = 39, normalized size = 1.50
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*x*ln(x**2)-4*x)*exp(x/ln(x**2))*exp(exp(x/ln(x**2)))+(4*x+1)*ln(x**2)**2)*exp(exp(exp(x/ln(x**2
)))+2*x)**2+((8*x*ln(x**2)-16*x)*exp(x/ln(x**2))*exp(exp(x/ln(x**2)))+(16*x+8)*ln(x**2)**2)*exp(exp(exp(x/ln(x
**2)))+2*x)+16*ln(x**2)**2)/ln(x**2)**2,x)
[Out]
8*x*exp(2*x + exp(exp(x/log(x**2)))) + x*exp(4*x + 2*exp(exp(x/log(x**2)))) + 16*x
________________________________________________________________________________________