Optimal. Leaf size=29 \[ \left (-4+\frac {2 \left (-1+\frac {x}{-\log (2)+\log (3)}+\log (-x+\log (5))\right )}{x}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 1.09, antiderivative size = 317, normalized size of antiderivative = 10.93, number of steps used = 29, number of rules used = 22, integrand size = 181, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.122, Rules used = {6, 6688, 12, 6742, 142, 2418, 2395, 44, 2392, 2391, 2390, 2301, 36, 29, 31, 2398, 2411, 2347, 2344, 2316, 2315, 2314} \begin {gather*} \frac {4}{x^2}+\frac {4 \log ^2(\log (5)-x)}{x^2}-\frac {4 \log \left (\frac {9}{4}\right ) \log (\log (5)-x)}{x^2 \log \left (\frac {3}{2}\right )}+\frac {8 (x-\log (5)) \log (\log (5)-x)}{x \log ^2(5)}-\frac {8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right ) \log (x)}{\log \left (\frac {3}{2}\right ) \log ^2(5)}-\frac {8 \left (\log \left (\frac {10}{3}\right )-\log \left (\frac {9}{4}\right ) \log (5)\right ) \log (x)}{\log \left (\frac {3}{2}\right ) \log ^2(5)}-\frac {4 \log \left (\frac {9}{4}\right ) \log (x)}{\log \left (\frac {3}{2}\right ) \log ^2(5)}-\frac {8 \log (x)}{\log ^2(5)}+\frac {8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right ) \log (x-\log (5))}{\log \left (\frac {3}{2}\right ) \log ^2(5)}+\frac {8 \left (\log \left (\frac {10}{3}\right )-\log \left (\frac {9}{4}\right ) \log (5)\right ) \log (x-\log (5))}{\log \left (\frac {3}{2}\right ) \log ^2(5)}+\frac {4 \log \left (\frac {9}{4}\right ) \log (x-\log (5))}{\log \left (\frac {3}{2}\right ) \log ^2(5)}-\frac {8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right ) \log (\log (5)-x)}{x \log \left (\frac {3}{2}\right ) \log (5)}+\frac {8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right )}{x \log \left (\frac {3}{2}\right ) \log (5)}+\frac {4 \log \left (\frac {9}{4}\right )}{x \log \left (\frac {3}{2}\right ) \log (5)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 29
Rule 31
Rule 36
Rule 44
Rule 142
Rule 2301
Rule 2314
Rule 2315
Rule 2316
Rule 2344
Rule 2347
Rule 2390
Rule 2391
Rule 2392
Rule 2395
Rule 2398
Rule 2411
Rule 2418
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-16 x^2+\left (-16 x-32 x^2\right ) \log (2)+\left (16 x+32 x^2\right ) \log (3)+(8 x+(8+16 x) \log (2)+(-8-16 x) \log (3)) \log (5)+\left (8 x^2+\left (24 x+16 x^2\right ) \log (2)+\left (-24 x-16 x^2\right ) \log (3)+(-8 x+(-16-16 x) \log (2)+(16+16 x) \log (3)) \log (5)\right ) \log (-x+\log (5))+(-8 x \log (2)+8 x \log (3)+(8 \log (2)-8 \log (3)) \log (5)) \log ^2(-x+\log (5))}{x^4 (\log (2)-\log (3))+\left (-x^3 \log (2)+x^3 \log (3)\right ) \log (5)} \, dx\\ &=\int \frac {8 \left (\log \left (\frac {3}{2}\right )+x \left (-1+\log \left (\frac {9}{4}\right )\right )-\log \left (\frac {3}{2}\right ) \log (-x+\log (5))\right ) (-2 x+\log (5)+(x-\log (5)) \log (-x+\log (5)))}{x^3 \log \left (\frac {3}{2}\right ) (x-\log (5))} \, dx\\ &=\frac {8 \int \frac {\left (\log \left (\frac {3}{2}\right )+x \left (-1+\log \left (\frac {9}{4}\right )\right )-\log \left (\frac {3}{2}\right ) \log (-x+\log (5))\right ) (-2 x+\log (5)+(x-\log (5)) \log (-x+\log (5)))}{x^3 (x-\log (5))} \, dx}{\log \left (\frac {3}{2}\right )}\\ &=\frac {8 \int \left (\frac {\left (\log \left (\frac {3}{2}\right )-x \left (1-\log \left (\frac {9}{4}\right )\right )\right ) (-2 x+\log (5))}{x^3 (x-\log (5))}+\frac {\left (-x^2 \left (1-\log \left (\frac {9}{4}\right )\right )-\log \left (\frac {9}{4}\right ) \log (5)-x \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {135}{8}\right )\right )\right ) \log (-x+\log (5))}{x^3 (x-\log (5))}-\frac {\log \left (\frac {3}{2}\right ) \log ^2(-x+\log (5))}{x^3}\right ) \, dx}{\log \left (\frac {3}{2}\right )}\\ &=-\left (8 \int \frac {\log ^2(-x+\log (5))}{x^3} \, dx\right )+\frac {8 \int \frac {\left (\log \left (\frac {3}{2}\right )+x \left (-1+\log \left (\frac {9}{4}\right )\right )\right ) (-2 x+\log (5))}{x^3 (x-\log (5))} \, dx}{\log \left (\frac {3}{2}\right )}+\frac {8 \int \frac {\left (-x^2 \left (1-\log \left (\frac {9}{4}\right )\right )-\log \left (\frac {9}{4}\right ) \log (5)-x \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {135}{8}\right )\right )\right ) \log (-x+\log (5))}{x^3 (x-\log (5))} \, dx}{\log \left (\frac {3}{2}\right )}\\ &=\frac {4 \log ^2(-x+\log (5))}{x^2}+8 \int \frac {\log (-x+\log (5))}{x^2 (-x+\log (5))} \, dx+\frac {8 \int \left (-\frac {\log \left (\frac {3}{2}\right )}{x^3}+\frac {\log \left (\frac {10}{3}\right )-\log \left (\frac {9}{4}\right ) \log (5)}{(x-\log (5)) \log ^2(5)}+\frac {-\log \left (\frac {10}{3}\right )+\log \left (\frac {9}{4}\right ) \log (5)}{x \log ^2(5)}+\frac {-\log \left (\frac {9}{4}\right ) \log (5)+\log \left (\frac {15}{2}\right )}{x^2 \log (5)}\right ) \, dx}{\log \left (\frac {3}{2}\right )}+\frac {8 \int \left (\frac {\log \left (\frac {9}{4}\right ) \log (-x+\log (5))}{x^3}-\frac {\log \left (\frac {3}{2}\right ) \log (-x+\log (5))}{x \log ^2(5)}+\frac {\log \left (\frac {3}{2}\right ) \log (-x+\log (5))}{(x-\log (5)) \log ^2(5)}+\frac {\left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right ) \log (-x+\log (5))}{x^2 \log (5)}\right ) \, dx}{\log \left (\frac {3}{2}\right )}\\ &=\frac {4}{x^2}+\frac {8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right )}{x \log \left (\frac {3}{2}\right ) \log (5)}-\frac {8 \left (\log \left (\frac {10}{3}\right )-\log \left (\frac {9}{4}\right ) \log (5)\right ) \log (x)}{\log \left (\frac {3}{2}\right ) \log ^2(5)}+\frac {8 \left (\log \left (\frac {10}{3}\right )-\log \left (\frac {9}{4}\right ) \log (5)\right ) \log (x-\log (5))}{\log \left (\frac {3}{2}\right ) \log ^2(5)}+\frac {4 \log ^2(-x+\log (5))}{x^2}-8 \operatorname {Subst}\left (\int \frac {\log (x)}{x (-x+\log (5))^2} \, dx,x,-x+\log (5)\right )+\frac {\left (8 \log \left (\frac {9}{4}\right )\right ) \int \frac {\log (-x+\log (5))}{x^3} \, dx}{\log \left (\frac {3}{2}\right )}-\frac {8 \int \frac {\log (-x+\log (5))}{x} \, dx}{\log ^2(5)}+\frac {8 \int \frac {\log (-x+\log (5))}{x-\log (5)} \, dx}{\log ^2(5)}+\frac {\left (8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right )\right ) \int \frac {\log (-x+\log (5))}{x^2} \, dx}{\log \left (\frac {3}{2}\right ) \log (5)}\\ &=\frac {4}{x^2}+\frac {8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right )}{x \log \left (\frac {3}{2}\right ) \log (5)}-\frac {8 \left (\log \left (\frac {10}{3}\right )-\log \left (\frac {9}{4}\right ) \log (5)\right ) \log (x)}{\log \left (\frac {3}{2}\right ) \log ^2(5)}+\frac {8 \left (\log \left (\frac {10}{3}\right )-\log \left (\frac {9}{4}\right ) \log (5)\right ) \log (x-\log (5))}{\log \left (\frac {3}{2}\right ) \log ^2(5)}-\frac {8 \log (x) \log (\log (5))}{\log ^2(5)}-\frac {4 \log \left (\frac {9}{4}\right ) \log (-x+\log (5))}{x^2 \log \left (\frac {3}{2}\right )}-\frac {8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right ) \log (-x+\log (5))}{x \log \left (\frac {3}{2}\right ) \log (5)}+\frac {4 \log ^2(-x+\log (5))}{x^2}-\frac {\left (4 \log \left (\frac {9}{4}\right )\right ) \int \frac {1}{x^2 (-x+\log (5))} \, dx}{\log \left (\frac {3}{2}\right )}-\frac {8 \int \frac {\log \left (1-\frac {x}{\log (5)}\right )}{x} \, dx}{\log ^2(5)}+\frac {8 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,-x+\log (5)\right )}{\log ^2(5)}-\frac {8 \operatorname {Subst}\left (\int \frac {\log (x)}{(-x+\log (5))^2} \, dx,x,-x+\log (5)\right )}{\log (5)}-\frac {8 \operatorname {Subst}\left (\int \frac {\log (x)}{x (-x+\log (5))} \, dx,x,-x+\log (5)\right )}{\log (5)}-\frac {\left (8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right )\right ) \int \frac {1}{x (-x+\log (5))} \, dx}{\log \left (\frac {3}{2}\right ) \log (5)}\\ &=\frac {4}{x^2}+\frac {8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right )}{x \log \left (\frac {3}{2}\right ) \log (5)}-\frac {8 \left (\log \left (\frac {10}{3}\right )-\log \left (\frac {9}{4}\right ) \log (5)\right ) \log (x)}{\log \left (\frac {3}{2}\right ) \log ^2(5)}+\frac {8 \left (\log \left (\frac {10}{3}\right )-\log \left (\frac {9}{4}\right ) \log (5)\right ) \log (x-\log (5))}{\log \left (\frac {3}{2}\right ) \log ^2(5)}-\frac {8 \log (x) \log (\log (5))}{\log ^2(5)}-\frac {4 \log \left (\frac {9}{4}\right ) \log (-x+\log (5))}{x^2 \log \left (\frac {3}{2}\right )}+\frac {8 (x-\log (5)) \log (-x+\log (5))}{x \log ^2(5)}-\frac {8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right ) \log (-x+\log (5))}{x \log \left (\frac {3}{2}\right ) \log (5)}+\frac {4 \log ^2(-x+\log (5))}{x^2}+\frac {4 \log ^2(-x+\log (5))}{\log ^2(5)}+\frac {8 \text {Li}_2\left (\frac {x}{\log (5)}\right )}{\log ^2(5)}-\frac {\left (4 \log \left (\frac {9}{4}\right )\right ) \int \left (\frac {1}{x \log ^2(5)}-\frac {1}{(x-\log (5)) \log ^2(5)}+\frac {1}{x^2 \log (5)}\right ) \, dx}{\log \left (\frac {3}{2}\right )}+\frac {8 \operatorname {Subst}\left (\int \frac {1}{-x+\log (5)} \, dx,x,-x+\log (5)\right )}{\log ^2(5)}-\frac {8 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,-x+\log (5)\right )}{\log ^2(5)}-\frac {8 \operatorname {Subst}\left (\int \frac {\log (x)}{-x+\log (5)} \, dx,x,-x+\log (5)\right )}{\log ^2(5)}-\frac {\left (8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right )\right ) \int \frac {1}{x} \, dx}{\log \left (\frac {3}{2}\right ) \log ^2(5)}-\frac {\left (8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right )\right ) \int \frac {1}{-x+\log (5)} \, dx}{\log \left (\frac {3}{2}\right ) \log ^2(5)}\\ &=\frac {4}{x^2}+\frac {4 \log \left (\frac {9}{4}\right )}{x \log \left (\frac {3}{2}\right ) \log (5)}+\frac {8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right )}{x \log \left (\frac {3}{2}\right ) \log (5)}-\frac {8 \log (x)}{\log ^2(5)}-\frac {4 \log \left (\frac {9}{4}\right ) \log (x)}{\log \left (\frac {3}{2}\right ) \log ^2(5)}-\frac {8 \left (\log \left (\frac {10}{3}\right )-\log \left (\frac {9}{4}\right ) \log (5)\right ) \log (x)}{\log \left (\frac {3}{2}\right ) \log ^2(5)}-\frac {8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right ) \log (x)}{\log \left (\frac {3}{2}\right ) \log ^2(5)}+\frac {4 \log \left (\frac {9}{4}\right ) \log (x-\log (5))}{\log \left (\frac {3}{2}\right ) \log ^2(5)}+\frac {8 \left (\log \left (\frac {10}{3}\right )-\log \left (\frac {9}{4}\right ) \log (5)\right ) \log (x-\log (5))}{\log \left (\frac {3}{2}\right ) \log ^2(5)}+\frac {8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right ) \log (x-\log (5))}{\log \left (\frac {3}{2}\right ) \log ^2(5)}-\frac {4 \log \left (\frac {9}{4}\right ) \log (-x+\log (5))}{x^2 \log \left (\frac {3}{2}\right )}+\frac {8 (x-\log (5)) \log (-x+\log (5))}{x \log ^2(5)}-\frac {8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right ) \log (-x+\log (5))}{x \log \left (\frac {3}{2}\right ) \log (5)}+\frac {4 \log ^2(-x+\log (5))}{x^2}+\frac {8 \text {Li}_2\left (\frac {x}{\log (5)}\right )}{\log ^2(5)}-\frac {8 \operatorname {Subst}\left (\int \frac {\log \left (\frac {x}{\log (5)}\right )}{-x+\log (5)} \, dx,x,-x+\log (5)\right )}{\log ^2(5)}\\ &=\frac {4}{x^2}+\frac {4 \log \left (\frac {9}{4}\right )}{x \log \left (\frac {3}{2}\right ) \log (5)}+\frac {8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right )}{x \log \left (\frac {3}{2}\right ) \log (5)}-\frac {8 \log (x)}{\log ^2(5)}-\frac {4 \log \left (\frac {9}{4}\right ) \log (x)}{\log \left (\frac {3}{2}\right ) \log ^2(5)}-\frac {8 \left (\log \left (\frac {10}{3}\right )-\log \left (\frac {9}{4}\right ) \log (5)\right ) \log (x)}{\log \left (\frac {3}{2}\right ) \log ^2(5)}-\frac {8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right ) \log (x)}{\log \left (\frac {3}{2}\right ) \log ^2(5)}+\frac {4 \log \left (\frac {9}{4}\right ) \log (x-\log (5))}{\log \left (\frac {3}{2}\right ) \log ^2(5)}+\frac {8 \left (\log \left (\frac {10}{3}\right )-\log \left (\frac {9}{4}\right ) \log (5)\right ) \log (x-\log (5))}{\log \left (\frac {3}{2}\right ) \log ^2(5)}+\frac {8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right ) \log (x-\log (5))}{\log \left (\frac {3}{2}\right ) \log ^2(5)}-\frac {4 \log \left (\frac {9}{4}\right ) \log (-x+\log (5))}{x^2 \log \left (\frac {3}{2}\right )}+\frac {8 (x-\log (5)) \log (-x+\log (5))}{x \log ^2(5)}-\frac {8 \left (\log \left (\frac {9}{4}\right ) \log (5)-\log \left (\frac {15}{2}\right )\right ) \log (-x+\log (5))}{x \log \left (\frac {3}{2}\right ) \log (5)}+\frac {4 \log ^2(-x+\log (5))}{x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.55, size = 206, normalized size = 7.10 \begin {gather*} \frac {4 \left (\frac {\log \left (\frac {3}{2}\right )}{x^2}+\frac {2 \log \left (\frac {9}{4}\right )}{x}-\frac {\log \left (\frac {3}{2}\right )}{\log ^2(5)}+\frac {2 \log ^2\left (\frac {10}{3}\right )}{\log \left (\frac {9}{4}\right ) \log ^2(5)}+\frac {\log \left (\frac {9}{4}\right )}{x \log (5)}-\frac {4 \log \left (\frac {10}{3}\right )}{\log (5)}+\log \left (\frac {81}{16}\right )-\frac {2 \log \left (\frac {15}{2}\right )}{x \log (5)}+\frac {\left (-1+\log \left (\frac {9}{4}\right )\right ) \log (25) \log (x-\log (5))}{\log ^2(5)}+\left (-\frac {\log \left (\frac {9}{4}\right )}{x^2}+\frac {\log ^2\left (\frac {9}{4}\right )+4 \log \left (\frac {3}{2}\right ) \log \left (\frac {10}{3}\right )-4 \log \left (\frac {3}{2}\right ) \log \left (\frac {9}{4}\right ) \log (5)}{\log \left (\frac {9}{4}\right ) \log ^2(5)}+\frac {-\log \left (\frac {81}{16}\right )+\frac {\log (25)}{\log (5)}}{x}\right ) \log (-x+\log (5))+\frac {\log \left (\frac {3}{2}\right ) \log ^2(-x+\log (5))}{x^2}\right )}{\log \left (\frac {3}{2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.53, size = 86, normalized size = 2.97 \begin {gather*} \frac {4 \, {\left ({\left (\log \relax (3) - \log \relax (2)\right )} \log \left (-x + \log \relax (5)\right )^{2} + {\left (4 \, x + 1\right )} \log \relax (3) - {\left (4 \, x + 1\right )} \log \relax (2) - 2 \, {\left ({\left (2 \, x + 1\right )} \log \relax (3) - {\left (2 \, x + 1\right )} \log \relax (2) - x\right )} \log \left (-x + \log \relax (5)\right ) - 2 \, x\right )}}{x^{2} \log \relax (3) - x^{2} \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.47, size = 98, normalized size = 3.38 \begin {gather*} -\frac {8 \, {\left (2 \, x \log \relax (3) - 2 \, x \log \relax (2) - x + \log \relax (3) - \log \relax (2)\right )} \log \left (-x + \log \relax (5)\right )}{x^{2} \log \relax (3) - x^{2} \log \relax (2)} + \frac {4 \, {\left (4 \, x \log \relax (3) - 4 \, x \log \relax (2) - 2 \, x + \log \relax (3) - \log \relax (2)\right )}}{x^{2} \log \relax (3) - x^{2} \log \relax (2)} + \frac {4 \, \log \left (-x + \log \relax (5)\right )^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.48, size = 78, normalized size = 2.69
method | result | size |
norman | \(\frac {4+4 \ln \left (\ln \relax (5)-x \right )^{2}+\frac {8 \left (-2 \ln \relax (3)+2 \ln \relax (2)+1\right ) x}{-\ln \relax (3)+\ln \relax (2)}-\frac {8 \left (-2 \ln \relax (3)+2 \ln \relax (2)+1\right ) x \ln \left (\ln \relax (5)-x \right )}{-\ln \relax (3)+\ln \relax (2)}-8 \ln \left (\ln \relax (5)-x \right )}{x^{2}}\) | \(78\) |
risch | \(\frac {4 \ln \left (\ln \relax (5)-x \right )^{2}}{x^{2}}-\frac {8 \left (2 x \ln \relax (2)-2 x \ln \relax (3)+\ln \relax (2)-\ln \relax (3)+x \right ) \ln \left (\ln \relax (5)-x \right )}{\left (-\ln \relax (3)+\ln \relax (2)\right ) x^{2}}+\frac {16 x \ln \relax (2)-16 x \ln \relax (3)+4 \ln \relax (2)-4 \ln \relax (3)+8 x}{\left (-\ln \relax (3)+\ln \relax (2)\right ) x^{2}}\) | \(89\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 295, normalized size = 10.17 \begin {gather*} 4 \, {\left (\frac {2 \, \log \left (x - \log \relax (5)\right )}{{\left (\log \relax (3) - \log \relax (2)\right )} \log \relax (5)^{3}} - \frac {2 \, \log \relax (x)}{{\left (\log \relax (3) - \log \relax (2)\right )} \log \relax (5)^{3}} + \frac {2 \, x + \log \relax (5)}{x^{2} {\left (\log \relax (3) - \log \relax (2)\right )} \log \relax (5)^{2}}\right )} \log \relax (5) \log \relax (3) - 4 \, {\left (\frac {2 \, \log \left (x - \log \relax (5)\right )}{{\left (\log \relax (3) - \log \relax (2)\right )} \log \relax (5)^{3}} - \frac {2 \, \log \relax (x)}{{\left (\log \relax (3) - \log \relax (2)\right )} \log \relax (5)^{3}} + \frac {2 \, x + \log \relax (5)}{x^{2} {\left (\log \relax (3) - \log \relax (2)\right )} \log \relax (5)^{2}}\right )} \log \relax (5) \log \relax (2) + \frac {8 \, \log \relax (x)}{\log \relax (5)^{2}} + \frac {4 \, {\left ({\left (\log \relax (5)^{2} \log \relax (3) - \log \relax (5)^{2} \log \relax (2)\right )} \log \left (-x + \log \relax (5)\right )^{2} - 2 \, {\left (\log \relax (5)^{2} - {\left (2 \, \log \relax (5)^{2} - \log \relax (5)\right )} \log \relax (3) + {\left (2 \, \log \relax (5)^{2} - \log \relax (5)\right )} \log \relax (2)\right )} x - 2 \, {\left (x^{2} {\left (\log \relax (3) - \log \relax (2)\right )} + \log \relax (5)^{2} \log \relax (3) - \log \relax (5)^{2} \log \relax (2) + {\left (2 \, \log \relax (5)^{2} \log \relax (3) - 2 \, \log \relax (5)^{2} \log \relax (2) - \log \relax (5)^{2}\right )} x\right )} \log \left (-x + \log \relax (5)\right )\right )}}{{\left (\log \relax (5)^{2} \log \relax (3) - \log \relax (5)^{2} \log \relax (2)\right )} x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {\ln \relax (5)\,\left (8\,x+\ln \relax (2)\,\left (16\,x+8\right )-\ln \relax (3)\,\left (16\,x+8\right )\right )-\ln \relax (2)\,\left (32\,x^2+16\,x\right )+\ln \relax (3)\,\left (32\,x^2+16\,x\right )+{\ln \left (\ln \relax (5)-x\right )}^2\,\left (8\,x\,\ln \relax (3)-8\,x\,\ln \relax (2)+\ln \relax (5)\,\left (8\,\ln \relax (2)-8\,\ln \relax (3)\right )\right )-\ln \left (\ln \relax (5)-x\right )\,\left (\ln \relax (5)\,\left (8\,x+\ln \relax (2)\,\left (16\,x+16\right )-\ln \relax (3)\,\left (16\,x+16\right )\right )-\ln \relax (2)\,\left (16\,x^2+24\,x\right )+\ln \relax (3)\,\left (16\,x^2+24\,x\right )-8\,x^2\right )-16\,x^2}{\ln \relax (5)\,\left (x^3\,\ln \relax (2)-x^3\,\ln \relax (3)\right )-x^4\,\ln \relax (2)+x^4\,\ln \relax (3)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.55, size = 94, normalized size = 3.24 \begin {gather*} \frac {\left (- 16 x \log {\relax (2 )} - 8 x + 16 x \log {\relax (3 )} - 8 \log {\relax (2 )} + 8 \log {\relax (3 )}\right ) \log {\left (- x + \log {\relax (5 )} \right )}}{- x^{2} \log {\relax (3 )} + x^{2} \log {\relax (2 )}} - \frac {x \left (- 16 \log {\relax (2 )} - 8 + 16 \log {\relax (3 )}\right ) - 4 \log {\relax (2 )} + 4 \log {\relax (3 )}}{x^{2} \left (- \log {\relax (3 )} + \log {\relax (2 )}\right )} + \frac {4 \log {\left (- x + \log {\relax (5 )} \right )}^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________