Optimal. Leaf size=35 \[ e^{x-(3+x)^2+(7-5 x) \left (2-e^3+\frac {1}{3} \left (-x+x^2\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 31, normalized size of antiderivative = 0.89, number of steps used = 2, number of rules used = 2, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.041, Rules used = {12, 6706} \begin {gather*} \exp \left (\frac {1}{3} \left (-5 x^3+9 x^2-52 x-3 e^3 (7-5 x)+15\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \exp \left (\frac {1}{3} \left (15-52 x+9 x^2-5 x^3+e^3 (-21+15 x)\right )\right ) \left (-52+15 e^3+18 x-15 x^2\right ) \, dx\\ &=\exp \left (\frac {1}{3} \left (15-3 e^3 (7-5 x)-52 x+9 x^2-5 x^3\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 30, normalized size = 0.86 \begin {gather*} e^{5-\frac {52 x}{3}+3 x^2-\frac {5 x^3}{3}+e^3 (-7+5 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 24, normalized size = 0.69 \begin {gather*} e^{\left (-\frac {5}{3} \, x^{3} + 3 \, x^{2} + {\left (5 \, x - 7\right )} e^{3} - \frac {52}{3} \, x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 25, normalized size = 0.71 \begin {gather*} e^{\left (-\frac {5}{3} \, x^{3} + 3 \, x^{2} + 5 \, x e^{3} - \frac {52}{3} \, x - 7 \, e^{3} + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 26, normalized size = 0.74
method | result | size |
gosper | \({\mathrm e}^{5 x \,{\mathrm e}^{3}-7 \,{\mathrm e}^{3}-\frac {5 x^{3}}{3}+3 x^{2}-\frac {52 x}{3}+5}\) | \(26\) |
norman | \({\mathrm e}^{\frac {\left (15 x -21\right ) {\mathrm e}^{3}}{3}-\frac {5 x^{3}}{3}+3 x^{2}-\frac {52 x}{3}+5}\) | \(26\) |
risch | \({\mathrm e}^{5 x \,{\mathrm e}^{3}-7 \,{\mathrm e}^{3}-\frac {5 x^{3}}{3}+3 x^{2}-\frac {52 x}{3}+5}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 24, normalized size = 0.69 \begin {gather*} e^{\left (-\frac {5}{3} \, x^{3} + 3 \, x^{2} + {\left (5 \, x - 7\right )} e^{3} - \frac {52}{3} \, x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.37, size = 30, normalized size = 0.86 \begin {gather*} {\mathrm {e}}^{-7\,{\mathrm {e}}^3}\,{\mathrm {e}}^{-\frac {52\,x}{3}}\,{\mathrm {e}}^5\,{\mathrm {e}}^{3\,x^2}\,{\mathrm {e}}^{-\frac {5\,x^3}{3}}\,{\mathrm {e}}^{5\,x\,{\mathrm {e}}^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 27, normalized size = 0.77 \begin {gather*} e^{- \frac {5 x^{3}}{3} + 3 x^{2} - \frac {52 x}{3} + \left (5 x - 7\right ) e^{3} + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________