Optimal. Leaf size=23 \[ 3-\frac {2 x}{3}+\frac {4 x^3}{3 \left (5 e^2+x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 36, normalized size of antiderivative = 1.57, number of steps used = 4, number of rules used = 3, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.061, Rules used = {27, 12, 1850} \begin {gather*} \frac {4 x^2}{3}-\frac {2}{3} \left (1+10 e^2\right ) x-\frac {500 e^6}{3 \left (x+5 e^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-50 e^4-2 x^2+8 x^3+e^2 \left (-20 x+60 x^2\right )}{3 \left (5 e^2+x\right )^2} \, dx\\ &=\frac {1}{3} \int \frac {-50 e^4-2 x^2+8 x^3+e^2 \left (-20 x+60 x^2\right )}{\left (5 e^2+x\right )^2} \, dx\\ &=\frac {1}{3} \int \left (-2 \left (1+10 e^2\right )+8 x+\frac {500 e^6}{\left (5 e^2+x\right )^2}\right ) \, dx\\ &=-\frac {2}{3} \left (1+10 e^2\right ) x+\frac {4 x^2}{3}-\frac {500 e^6}{3 \left (5 e^2+x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 40, normalized size = 1.74 \begin {gather*} -\frac {2}{3} \left (100 e^4+x-2 x^2+\frac {250 e^6}{5 e^2+x}+5 e^2 (1+2 x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 35, normalized size = 1.52 \begin {gather*} \frac {2 \, {\left (2 \, x^{3} - x^{2} - 50 \, x e^{4} - 5 \, x e^{2} - 250 \, e^{6}\right )}}{3 \, {\left (x + 5 \, e^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.46, size = 27, normalized size = 1.17
method | result | size |
norman | \(\frac {-\frac {2 x^{2}}{3}+\frac {4 x^{3}}{3}+\frac {50 \,{\mathrm e}^{4}}{3}}{5 \,{\mathrm e}^{2}+x}\) | \(27\) |
risch | \(-\frac {20 \,{\mathrm e}^{2} x}{3}+\frac {4 x^{2}}{3}-\frac {2 x}{3}-\frac {100 \,{\mathrm e}^{6}}{3 \left ({\mathrm e}^{2}+\frac {x}{5}\right )}\) | \(27\) |
gosper | \(\frac {-\frac {2 x^{2}}{3}+\frac {4 x^{3}}{3}+\frac {50 \,{\mathrm e}^{4}}{3}}{5 \,{\mathrm e}^{2}+x}\) | \(28\) |
meijerg | \(-\frac {2 x}{3 \left (1+\frac {x \,{\mathrm e}^{-2}}{5}\right )}+\frac {5 \left (60 \,{\mathrm e}^{2}-2\right ) {\mathrm e}^{2} \left (\frac {x \,{\mathrm e}^{-2} \left (\frac {3 x \,{\mathrm e}^{-2}}{5}+6\right )}{15+3 x \,{\mathrm e}^{-2}}-2 \ln \left (1+\frac {x \,{\mathrm e}^{-2}}{5}\right )\right )}{3}-\frac {20 \,{\mathrm e}^{2} \left (-\frac {x \,{\mathrm e}^{-2}}{5 \left (1+\frac {x \,{\mathrm e}^{-2}}{5}\right )}+\ln \left (1+\frac {x \,{\mathrm e}^{-2}}{5}\right )\right )}{3}+\frac {200 \,{\mathrm e}^{4} \left (-\frac {x \,{\mathrm e}^{-2} \left (-\frac {2 x^{2} {\mathrm e}^{-4}}{25}+\frac {6 x \,{\mathrm e}^{-2}}{5}+12\right )}{20 \left (1+\frac {x \,{\mathrm e}^{-2}}{5}\right )}+3 \ln \left (1+\frac {x \,{\mathrm e}^{-2}}{5}\right )\right )}{3}\) | \(126\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 27, normalized size = 1.17 \begin {gather*} \frac {4}{3} \, x^{2} - \frac {2}{3} \, x {\left (10 \, e^{2} + 1\right )} - \frac {500 \, e^{6}}{3 \, {\left (x + 5 \, e^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.58, size = 29, normalized size = 1.26 \begin {gather*} \frac {4\,x^2}{3}-\frac {500\,{\mathrm {e}}^6}{3\,x+15\,{\mathrm {e}}^2}-x\,\left (\frac {20\,{\mathrm {e}}^2}{3}+\frac {2}{3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 32, normalized size = 1.39 \begin {gather*} \frac {4 x^{2}}{3} + x \left (- \frac {20 e^{2}}{3} - \frac {2}{3}\right ) - \frac {500 e^{6}}{3 x + 15 e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________