Optimal. Leaf size=22 \[ \frac {\left (25-e^{e^{e^x}+x} x^2\right )^2}{x^2} \]
________________________________________________________________________________________
Rubi [F] time = 0.84, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1250+e^{e^{e^x}+x} \left (-50 x^3-50 e^{e^x+x} x^3\right )+e^{2 \left (e^{e^x}+x\right )} \left (2 x^4+2 x^5+2 e^{e^x+x} x^5\right )}{x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-50 e^{e^{e^x}+x}-\frac {1250}{x^3}+2 e^{2 e^{e^x}+e^x+3 x} x^2+2 e^{e^{e^x}+2 x} \left (-25 e^{e^x}+e^{e^{e^x}} x+e^{e^{e^x}} x^2\right )\right ) \, dx\\ &=\frac {625}{x^2}+2 \int e^{2 e^{e^x}+e^x+3 x} x^2 \, dx+2 \int e^{e^{e^x}+2 x} \left (-25 e^{e^x}+e^{e^{e^x}} x+e^{e^{e^x}} x^2\right ) \, dx-50 \int e^{e^{e^x}+x} \, dx\\ &=\frac {625}{x^2}+2 \int e^{2 e^{e^x}+e^x+3 x} x^2 \, dx+2 \int e^{e^{e^x}+2 x} \left (-25 e^{e^x}+e^{e^{e^x}} x (1+x)\right ) \, dx-50 \operatorname {Subst}\left (\int e^{e^x} \, dx,x,e^x\right )\\ &=\frac {625}{x^2}+2 \int e^{2 e^{e^x}+e^x+3 x} x^2 \, dx+2 \int \left (-25 e^{e^{e^x}+e^x+2 x}+e^{2 e^{e^x}+2 x} x (1+x)\right ) \, dx-50 \operatorname {Subst}\left (\int \frac {e^x}{x} \, dx,x,e^{e^x}\right )\\ &=\frac {625}{x^2}-50 \text {Ei}\left (e^{e^x}\right )+2 \int e^{2 e^{e^x}+e^x+3 x} x^2 \, dx+2 \int e^{2 e^{e^x}+2 x} x (1+x) \, dx-50 \int e^{e^{e^x}+e^x+2 x} \, dx\\ &=\frac {625}{x^2}-50 \text {Ei}\left (e^{e^x}\right )+2 \int e^{2 e^{e^x}+e^x+3 x} x^2 \, dx+2 \int e^{2 \left (e^{e^x}+x\right )} x (1+x) \, dx-50 \operatorname {Subst}\left (\int e^{e^x+x} x \, dx,x,e^x\right )\\ &=\frac {625}{x^2}-50 \text {Ei}\left (e^{e^x}\right )+2 \int e^{2 e^{e^x}+e^x+3 x} x^2 \, dx+2 \int \left (e^{2 \left (e^{e^x}+x\right )} x+e^{2 \left (e^{e^x}+x\right )} x^2\right ) \, dx-50 \operatorname {Subst}\left (\int e^{e^x+x} x \, dx,x,e^x\right )\\ &=\frac {625}{x^2}-50 \text {Ei}\left (e^{e^x}\right )+2 \int e^{2 \left (e^{e^x}+x\right )} x \, dx+2 \int e^{2 \left (e^{e^x}+x\right )} x^2 \, dx+2 \int e^{2 e^{e^x}+e^x+3 x} x^2 \, dx-50 \operatorname {Subst}\left (\int e^{e^x+x} x \, dx,x,e^x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 21, normalized size = 0.95 \begin {gather*} \frac {\left (-25+e^{e^{e^x}+x} x^2\right )^2}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.84, size = 48, normalized size = 2.18 \begin {gather*} \frac {x^{4} e^{\left (2 \, {\left (x e^{x} + e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )}\right )} - 50 \, x^{2} e^{\left ({\left (x e^{x} + e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )}\right )} + 625}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left ({\left (x^{5} e^{\left (x + e^{x}\right )} + x^{5} + x^{4}\right )} e^{\left (2 \, x + 2 \, e^{\left (e^{x}\right )}\right )} - 25 \, {\left (x^{3} e^{\left (x + e^{x}\right )} + x^{3}\right )} e^{\left (x + e^{\left (e^{x}\right )}\right )} - 625\right )}}{x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 29, normalized size = 1.32
method | result | size |
risch | \(\frac {625}{x^{2}}+x^{2} {\mathrm e}^{2 x +2 \,{\mathrm e}^{{\mathrm e}^{x}}}-50 \,{\mathrm e}^{x +{\mathrm e}^{{\mathrm e}^{x}}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 28, normalized size = 1.27 \begin {gather*} x^{2} e^{\left (2 \, x + 2 \, e^{\left (e^{x}\right )}\right )} + \frac {625}{x^{2}} - 50 \, e^{\left (x + e^{\left (e^{x}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 28, normalized size = 1.27 \begin {gather*} \frac {625}{x^2}-50\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^x}}\,{\mathrm {e}}^x+x^2\,{\mathrm {e}}^{2\,{\mathrm {e}}^{{\mathrm {e}}^x}}\,{\mathrm {e}}^{2\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 4.37, size = 29, normalized size = 1.32 \begin {gather*} x^{2} e^{2 x + 2 e^{e^{x}}} - 50 e^{x + e^{e^{x}}} + \frac {625}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________