Optimal. Leaf size=18 \[ -x^3 \left (x-4 e^{-4 x} (-2+x) x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.46, antiderivative size = 26, normalized size of antiderivative = 1.44, number of steps used = 21, number of rules used = 6, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {6741, 12, 6742, 2196, 2176, 2194} \begin {gather*} 4 e^{-4 x} x^5-8 e^{-4 x} x^4-x^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 4 e^{-4 x} x^3 \left (-8-e^{4 x}+13 x-4 x^2\right ) \, dx\\ &=4 \int e^{-4 x} x^3 \left (-8-e^{4 x}+13 x-4 x^2\right ) \, dx\\ &=4 \int \left (-x^3-e^{-4 x} x^3 \left (8-13 x+4 x^2\right )\right ) \, dx\\ &=-x^4-4 \int e^{-4 x} x^3 \left (8-13 x+4 x^2\right ) \, dx\\ &=-x^4-4 \int \left (8 e^{-4 x} x^3-13 e^{-4 x} x^4+4 e^{-4 x} x^5\right ) \, dx\\ &=-x^4-16 \int e^{-4 x} x^5 \, dx-32 \int e^{-4 x} x^3 \, dx+52 \int e^{-4 x} x^4 \, dx\\ &=8 e^{-4 x} x^3-x^4-13 e^{-4 x} x^4+4 e^{-4 x} x^5-20 \int e^{-4 x} x^4 \, dx-24 \int e^{-4 x} x^2 \, dx+52 \int e^{-4 x} x^3 \, dx\\ &=6 e^{-4 x} x^2-5 e^{-4 x} x^3-x^4-8 e^{-4 x} x^4+4 e^{-4 x} x^5-12 \int e^{-4 x} x \, dx-20 \int e^{-4 x} x^3 \, dx+39 \int e^{-4 x} x^2 \, dx\\ &=3 e^{-4 x} x-\frac {15}{4} e^{-4 x} x^2-x^4-8 e^{-4 x} x^4+4 e^{-4 x} x^5-3 \int e^{-4 x} \, dx-15 \int e^{-4 x} x^2 \, dx+\frac {39}{2} \int e^{-4 x} x \, dx\\ &=\frac {3 e^{-4 x}}{4}-\frac {15}{8} e^{-4 x} x-x^4-8 e^{-4 x} x^4+4 e^{-4 x} x^5+\frac {39}{8} \int e^{-4 x} \, dx-\frac {15}{2} \int e^{-4 x} x \, dx\\ &=-\frac {15}{32} e^{-4 x}-x^4-8 e^{-4 x} x^4+4 e^{-4 x} x^5-\frac {15}{8} \int e^{-4 x} \, dx\\ &=-x^4-8 e^{-4 x} x^4+4 e^{-4 x} x^5\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 20, normalized size = 1.11 \begin {gather*} -e^{-4 x} \left (8+e^{4 x}-4 x\right ) x^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 25, normalized size = 1.39 \begin {gather*} {\left (4 \, x^{5} - x^{4} e^{\left (4 \, x\right )} - 8 \, x^{4}\right )} e^{\left (-4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 24, normalized size = 1.33 \begin {gather*} 4 \, x^{5} e^{\left (-4 \, x\right )} - 8 \, x^{4} e^{\left (-4 \, x\right )} - x^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 23, normalized size = 1.28
method | result | size |
risch | \(-x^{4}+\left (4 x^{5}-8 x^{4}\right ) {\mathrm e}^{-4 x}\) | \(23\) |
norman | \(\left (-8 x^{4}+4 x^{5}-x^{4} {\mathrm e}^{4 x}\right ) {\mathrm e}^{-4 x}\) | \(28\) |
derivativedivides | \(-x^{4}-8 \,{\mathrm e}^{-4 x} x^{4}+4 \,{\mathrm e}^{-4 x} x^{5}\) | \(29\) |
default | \(-x^{4}-8 \,{\mathrm e}^{-4 x} x^{4}+4 \,{\mathrm e}^{-4 x} x^{5}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 84, normalized size = 4.67 \begin {gather*} -x^{4} + \frac {1}{32} \, {\left (128 \, x^{5} + 160 \, x^{4} + 160 \, x^{3} + 120 \, x^{2} + 60 \, x + 15\right )} e^{\left (-4 \, x\right )} - \frac {13}{32} \, {\left (32 \, x^{4} + 32 \, x^{3} + 24 \, x^{2} + 12 \, x + 3\right )} e^{\left (-4 \, x\right )} + \frac {1}{4} \, {\left (32 \, x^{3} + 24 \, x^{2} + 12 \, x + 3\right )} e^{\left (-4 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 20, normalized size = 1.11 \begin {gather*} -x^4\,\left (8\,{\mathrm {e}}^{-4\,x}-4\,x\,{\mathrm {e}}^{-4\,x}+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 17, normalized size = 0.94 \begin {gather*} - x^{4} + \left (4 x^{5} - 8 x^{4}\right ) e^{- 4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________