Optimal. Leaf size=26 \[ \frac {1}{3} \log \left (3+\frac {1}{3} e^{-\left ((-4+x) \left (\frac {2}{x}+x\right )\right )} x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.53, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8+x+4 x^2-2 x^3}{27 e^{\frac {-8+2 x-4 x^2+x^3}{x}} x+3 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {8 e^{\frac {4 \left (2+x^2\right )}{x}}}{3 x \left (-9 e^{2+x^2}-e^{\frac {8}{x}+4 x} x\right )}+\frac {2 e^{\frac {4 \left (2+x^2\right )}{x}} x^2}{3 \left (-9 e^{2+x^2}-e^{\frac {8}{x}+4 x} x\right )}+\frac {e^{\frac {4 \left (2+x^2\right )}{x}}}{3 \left (9 e^{2+x^2}+e^{\frac {8}{x}+4 x} x\right )}+\frac {4 e^{\frac {4 \left (2+x^2\right )}{x}} x}{3 \left (9 e^{2+x^2}+e^{\frac {8}{x}+4 x} x\right )}\right ) \, dx\\ &=\frac {1}{3} \int \frac {e^{\frac {4 \left (2+x^2\right )}{x}}}{9 e^{2+x^2}+e^{\frac {8}{x}+4 x} x} \, dx+\frac {2}{3} \int \frac {e^{\frac {4 \left (2+x^2\right )}{x}} x^2}{-9 e^{2+x^2}-e^{\frac {8}{x}+4 x} x} \, dx+\frac {4}{3} \int \frac {e^{\frac {4 \left (2+x^2\right )}{x}} x}{9 e^{2+x^2}+e^{\frac {8}{x}+4 x} x} \, dx+\frac {8}{3} \int \frac {e^{\frac {4 \left (2+x^2\right )}{x}}}{x \left (-9 e^{2+x^2}-e^{\frac {8}{x}+4 x} x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.06, size = 34, normalized size = 1.31 \begin {gather*} \frac {1}{3} \left (-x^2+\log \left (9 e^{2+x^2}+e^{\frac {8}{x}+4 x} x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 41, normalized size = 1.58 \begin {gather*} -\frac {x^{3} - 4 \, x^{2} - x \log \left (x + 9 \, e^{\left (\frac {x^{3} - 4 \, x^{2} + 2 \, x - 8}{x}\right )}\right ) - 8}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 41, normalized size = 1.58 \begin {gather*} -\frac {x^{3} - 4 \, x^{2} - x \log \left (x + 9 \, e^{\left (\frac {x^{3} - 4 \, x^{2} + 2 \, x - 8}{x}\right )}\right ) - 8}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 40, normalized size = 1.54
method | result | size |
risch | \(-\frac {x^{3}-4 x^{2}+2 x -8}{3 x}+\frac {\ln \left (\frac {x}{9}+{\mathrm e}^{\frac {\left (x -4\right ) \left (x^{2}+2\right )}{x}}\right )}{3}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 34, normalized size = 1.31 \begin {gather*} -\frac {1}{3} \, x^{2} + \frac {1}{3} \, \log \left (\frac {1}{9} \, {\left (x e^{\left (4 \, x + \frac {8}{x}\right )} + 9 \, e^{\left (x^{2} + 2\right )}\right )} e^{\left (-2\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.62, size = 37, normalized size = 1.42 \begin {gather*} \frac {4\,x}{3}+\frac {\ln \left (x+9\,{\mathrm {e}}^{-4\,x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^2\,{\mathrm {e}}^{-\frac {8}{x}}\right )}{3}+\frac {8}{3\,x}-\frac {x^2}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.23, size = 37, normalized size = 1.42 \begin {gather*} - \frac {x^{2}}{3} + \frac {4 x}{3} + \frac {\log {\left (\frac {x}{9} + e^{\frac {x^{3} - 4 x^{2} + 2 x - 8}{x}} \right )}}{3} + \frac {8}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________