Optimal. Leaf size=32 \[ 2+4 \left (3+e^{\frac {1}{5} \left (2+4 x^2+\frac {5 x}{2 \left (e^x+x\right )}\right )}+x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 8.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {20 e^{2 x}+40 e^x x+20 x^2+\exp \left (\frac {9 x+8 x^3+e^x \left (4+8 x^2\right )}{10 e^x+10 x}\right ) \left (32 e^{2 x} x+32 x^3+e^x \left (10-10 x+64 x^2\right )\right )}{5 e^{2 x}+10 e^x x+5 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {20 e^{2 x}+40 e^x x+20 x^2+\exp \left (\frac {9 x+8 x^3+e^x \left (4+8 x^2\right )}{10 e^x+10 x}\right ) \left (32 e^{2 x} x+32 x^3+e^x \left (10-10 x+64 x^2\right )\right )}{5 \left (e^x+x\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {20 e^{2 x}+40 e^x x+20 x^2+\exp \left (\frac {9 x+8 x^3+e^x \left (4+8 x^2\right )}{10 e^x+10 x}\right ) \left (32 e^{2 x} x+32 x^3+e^x \left (10-10 x+64 x^2\right )\right )}{\left (e^x+x\right )^2} \, dx\\ &=\frac {1}{5} \int \left (20+\frac {2 \exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right ) \left (5 e^x-5 e^x x+16 e^{2 x} x+32 e^x x^2+16 x^3\right )}{\left (e^x+x\right )^2}\right ) \, dx\\ &=4 x+\frac {2}{5} \int \frac {\exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right ) \left (5 e^x-5 e^x x+16 e^{2 x} x+32 e^x x^2+16 x^3\right )}{\left (e^x+x\right )^2} \, dx\\ &=4 x+\frac {2}{5} \int \left (16 \exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right ) x+\frac {5 \exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right ) (-1+x) x}{\left (e^x+x\right )^2}-\frac {5 \exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right ) (-1+x)}{e^x+x}\right ) \, dx\\ &=4 x+2 \int \frac {\exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right ) (-1+x) x}{\left (e^x+x\right )^2} \, dx-2 \int \frac {\exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right ) (-1+x)}{e^x+x} \, dx+\frac {32}{5} \int \exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right ) x \, dx\\ &=4 x+2 \int \left (-\frac {\exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right ) x}{\left (e^x+x\right )^2}+\frac {\exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right ) x^2}{\left (e^x+x\right )^2}\right ) \, dx-2 \int \left (-\frac {\exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right )}{e^x+x}+\frac {\exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right ) x}{e^x+x}\right ) \, dx+\frac {32}{5} \int \exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right ) x \, dx\\ &=4 x-2 \int \frac {\exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right ) x}{\left (e^x+x\right )^2} \, dx+2 \int \frac {\exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right ) x^2}{\left (e^x+x\right )^2} \, dx+2 \int \frac {\exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right )}{e^x+x} \, dx-2 \int \frac {\exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right ) x}{e^x+x} \, dx+\frac {32}{5} \int \exp \left (\frac {4 e^x+9 x+8 e^x x^2+8 x^3}{10 \left (e^x+x\right )}\right ) x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 27, normalized size = 0.84 \begin {gather*} 4 \left (e^{\frac {1}{10} \left (4+8 x^2+\frac {5 x}{e^x+x}\right )}+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 35, normalized size = 1.09 \begin {gather*} 4 \, x + 4 \, e^{\left (\frac {8 \, x^{3} + 4 \, {\left (2 \, x^{2} + 1\right )} e^{x} + 9 \, x}{10 \, {\left (x + e^{x}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 36, normalized size = 1.12
method | result | size |
risch | \(4 x +4 \,{\mathrm e}^{\frac {8 \,{\mathrm e}^{x} x^{2}+8 x^{3}+4 \,{\mathrm e}^{x}+9 x}{10 \,{\mathrm e}^{x}+10 x}}\) | \(36\) |
norman | \(\frac {4 x^{2}+4 x \,{\mathrm e}^{\frac {\left (8 x^{2}+4\right ) {\mathrm e}^{x}+8 x^{3}+9 x}{10 \,{\mathrm e}^{x}+10 x}}+4 \,{\mathrm e}^{x} x +4 \,{\mathrm e}^{x} {\mathrm e}^{\frac {\left (8 x^{2}+4\right ) {\mathrm e}^{x}+8 x^{3}+9 x}{10 \,{\mathrm e}^{x}+10 x}}}{{\mathrm e}^{x}+x}\) | \(88\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 24, normalized size = 0.75 \begin {gather*} 4 \, x + 4 \, e^{\left (\frac {4}{5} \, x^{2} - \frac {e^{x}}{2 \, {\left (x + e^{x}\right )}} + \frac {9}{10}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.79, size = 69, normalized size = 2.16 \begin {gather*} 4\,x+4\,{\mathrm {e}}^{\frac {9\,x}{10\,x+10\,{\mathrm {e}}^x}}\,{\mathrm {e}}^{\frac {8\,x^2\,{\mathrm {e}}^x}{10\,x+10\,{\mathrm {e}}^x}}\,{\mathrm {e}}^{\frac {8\,x^3}{10\,x+10\,{\mathrm {e}}^x}}\,{\mathrm {e}}^{\frac {4\,{\mathrm {e}}^x}{10\,x+10\,{\mathrm {e}}^x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 32, normalized size = 1.00 \begin {gather*} 4 x + 4 e^{\frac {8 x^{3} + 9 x + \left (8 x^{2} + 4\right ) e^{x}}{10 x + 10 e^{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________