Optimal. Leaf size=19 \[ -5+\log \left (\left (-1-\frac {5}{4} e^x x^2 \log (x)\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {10 e^x x+e^x \left (20 x+10 x^2\right ) \log (x)}{4+5 e^x x^2 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 e^x x (1+(2+x) \log (x))}{4+5 e^x x^2 \log (x)} \, dx\\ &=10 \int \frac {e^x x (1+(2+x) \log (x))}{4+5 e^x x^2 \log (x)} \, dx\\ &=10 \int \left (\frac {e^x x}{4+5 e^x x^2 \log (x)}+\frac {2 e^x x \log (x)}{4+5 e^x x^2 \log (x)}+\frac {e^x x^2 \log (x)}{4+5 e^x x^2 \log (x)}\right ) \, dx\\ &=10 \int \frac {e^x x}{4+5 e^x x^2 \log (x)} \, dx+10 \int \frac {e^x x^2 \log (x)}{4+5 e^x x^2 \log (x)} \, dx+20 \int \frac {e^x x \log (x)}{4+5 e^x x^2 \log (x)} \, dx\\ &=10 \int \frac {e^x x}{4+5 e^x x^2 \log (x)} \, dx+10 \int \left (\frac {1}{5}-\frac {4}{5 \left (4+5 e^x x^2 \log (x)\right )}\right ) \, dx+20 \int \frac {e^x x \log (x)}{4+5 e^x x^2 \log (x)} \, dx\\ &=2 x-8 \int \frac {1}{4+5 e^x x^2 \log (x)} \, dx+10 \int \frac {e^x x}{4+5 e^x x^2 \log (x)} \, dx+20 \int \frac {e^x x \log (x)}{4+5 e^x x^2 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 15, normalized size = 0.79 \begin {gather*} 2 \log \left (4+5 e^x x^2 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 30, normalized size = 1.58 \begin {gather*} 2 \, x + 4 \, \log \relax (x) + 2 \, \log \left (\frac {{\left (5 \, x^{2} e^{x} \log \relax (x) + 4\right )} e^{\left (-x\right )}}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 14, normalized size = 0.74 \begin {gather*} 2 \, \log \left (5 \, x^{2} e^{x} \log \relax (x) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 15, normalized size = 0.79
method | result | size |
norman | \(2 \ln \left (5 x^{2} {\mathrm e}^{x} \ln \relax (x )+4\right )\) | \(15\) |
risch | \(2 x +4 \ln \relax (x )+2 \ln \left (\ln \relax (x )+\frac {4 \,{\mathrm e}^{-x}}{5 x^{2}}\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 33, normalized size = 1.74 \begin {gather*} 4 \, \log \relax (x) + 2 \, \log \left (\frac {5 \, x^{2} e^{x} \log \relax (x) + 4}{5 \, x^{2} \log \relax (x)}\right ) + 2 \, \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.66, size = 14, normalized size = 0.74 \begin {gather*} 2\,\ln \left (5\,x^2\,{\mathrm {e}}^x\,\ln \relax (x)+4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 27, normalized size = 1.42 \begin {gather*} 4 \log {\relax (x )} + 2 \log {\left (e^{x} + \frac {4}{5 x^{2} \log {\relax (x )}} \right )} + 2 \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________